全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紧束缚模型下有限尺寸的简立方晶格体系等离激元的偶极模式
Dipole Mode of Plasmon in Finite-Size Simple Cubic Lattice System of Tight-Binding Model

DOI: 10.12677/OE.2019.91007, PP. 42-47

Keywords: 简立方晶格,等离激元,线性响应理论,紧束缚模型
Simple Cubic Lattice
, Plasmon, The Linear Response Theory, The Tight-Binding Mode

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于紧束缚模型,发展了线性响应理论构造了有限尺寸的简立方晶格体系的偶极响应函数。通过偶极响应函数随外加电势场频率的变化关系,指出简立方晶格体系等离激元的偶极模式被外场激发时,偶极响应函数的实部会出现反转,偶极响应函数的虚部会出现极大值。这些结果意味着等离激元的偶极模式被激发时,体系对外加电势场的能量吸收有极大值,能量吸收的同时伴随偶极矩的剧烈振荡。进一步,我们给出在偶极等离激元处体系的电荷会在各个不同方向显示出偶极矩特征。
Based on the tight-binding model, we developed the linear response theory to construct the dipole response function of finite-size simple cubic lattice systems. Through the change of dipole response function with the frequency of external electric potential field, we pointed out that when the dipole mode of the plasmon in a simple cubic lattice is excited by an external field, the real part of the dipole response function will be reversed and the imaginary part of the dipole response function will be maximized. These results imply that the energy absorbed by the system from the external potential field is extremely high at dipole plasmon, and the energy absorption is accomplished by the violently dipole moment oscillations. Furthermore, we show that the charge of the system will show dipole moment characteristics in different directions at dipole plasmon.

References

[1]  Nilius, N., Wallis, T.M. and Ho, W. (2002) Development of One-Dimensional Band Structure in Artificial Gold Chains. Science, 297, 1853-1856.
https://doi.org/10.1126/science.1075242
[2]  Nazin, G.V., Qiu, X.H. and Ho, W. (2003) Atomic Engineering of Photon Emission with a Scanning Tunneling Microscope. Physical Review Letters, 90, Article ID: 216110.
https://doi.org/10.1103/PhysRevLett.90.216110
[3]  Nayyar, N., Turkowski, V. and Rahman, T.S. (2012) Optical Generation of Collective Plasmon Modes in Small Gold Chains Induced by Doping Transition-Metal Impurities. Physical Review Letters, 109, Article ID: 157404.
https://doi.org/10.1103/PhysRevLett.109.157404
[4]  Yuan, Z. and Gao, S. (2008) Plasmon Resonances in Linear Atomic Chains: Free-Electron Behavior and Anisotropic Screening of D’Electrons. Physical Review B, 78, Article ID: 235413.
https://doi.org/10.1103/PhysRevB.78.235413
[5]  Yan, J., Yuan, Z. and Gao, S. (2007) End and Central Plasmon Resonances in Linear Atomic Chains. Physical Review Letters, 98, Article ID: 216602.
https://doi.org/10.1103/PhysRevLett.98.216602
[6]  Wu, R., Xue, H., Yu, Y., Hu, H. and Liu, Q. (2014) Quadrupole Plasmon Excitations in Confined One-Dimensional Systems. Europhysics Letters, 108, 27001-27005.
https://doi.org/10.1209/0295-5075/108/27001
[7]  Wu, R., Xue, H., Yu, Y. and Hu, H. (2014) Dipole and Quadrupole Plasmon in Confined Quasi-One-Dimensional Electron Gas Systems. Physics Letters A, 378, 2995-3000.
https://doi.org/10.1016/j.physleta.2014.08.013
[8]  Xue, H.J., Wu, R.L. and Hu, C.X. (2018) The Study of the Plasmon Modes of Square Atomic Clusters Based on the Eigen-Oscillation Equation of Charge under the Free-Electron Gas Model. International Journal of Modern Physics B, 32, Article ID: 1850139.
https://doi.org/10.1142/S0217979218501394
[9]  吴仍来, 肖世发, 薛红杰, 等. 二维方形量子点体系等离激元的量子化[J]. 物理学报, 2017(66): 266-272.
[10]  王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324.
[11]  童廉明, 徐红星. 表面等离激元——机理、应用与展望[J]. 物理, 2012, 41(9): 582-588. http://www.wuli.ac.cn/CN/Y2012/V41/I9/582
[12]  Larsson, E.M., Langhammer, C., ZoricIetal, I. and Bengt, K. (2009) Nanoplasmonic Probes of Catalytic Reactions. Science, 326, 1091-1094.
https://doi.org/10.1126/science.1176593
[13]  Pacifici, D., Lezec, H.J. and Atwater, H.A. (2007) All-Optical Modulation by Plasmonic Excitation of CdSe Quantum Dots. Nature Photonics, 1, 402-406.
https://doi.org/10.1038/nphoton.2007.95
[14]  Wei, H., Li, Z.P., Tian, X.R., et al. (2011) Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. NanoLetters, 11, 471.
https://doi.org/10.1021/nl103228b
[15]  Wan, Y.T., Norman, J., Li, Q., et al. (2017) 1.3??μm Submilliamp Threshold Quantum Dot Micro-Lasers on Si. Optica, 4, 940-944.
https://doi.org/10.1364/OPTICA.4.000940
[16]  Maier, M., Margetis, D. and Luskin, M. (2017) Dipole Excitation of Surface Plasmon on a Conducting Sheet: Finite Element Approximation and Validation. Journal of Computational Physics, 339, 126-145.
https://doi.org/10.1016/j.jcp.2017.03.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133