全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于微脉冲激光雷达的北京地区卷云特征研究
Cirrus Properties Based on Micro Pulse Lidar over Beijing Region

DOI: 10.12677/OE.2019.91006, PP. 34-41

Keywords: 微脉冲激光雷达,卷云,光学厚度
Micro Pulse Lidar
, Cirrus, Optical Depth

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2016年11月至2017年5月北京地区的微脉冲激光雷达资料,统计分析了卷云的云底高度、厚度以及光学厚度。结果表明卷云的云底高度主要分布在5~10 km之间,平均海拔高度是7.04 ± 1.10 km,随着云底高度的增加,卷云出现频率逐渐减小;卷云的厚度主要分布在0.3~1.5 km之间,平均值为0.73 ± 0.25 km;卷云的云底高度和厚度呈负的相关关系;卷云的光学厚度值小于0.14,光学厚度与厚度呈正的相关关系。
By using cirrus measurements with a Micro Pulse Lidar at Beijing from November in 2016 to May in 2017, the statistical analysis is made for cirrus height and thickness and optical depth is calculated. The results show that cirrus base height varies between 5 and 10 km, and the mean value is 7.04 ± 1.10 km above the sea level. Cirrus thickness varies between 0.3 and 1.5 km, and the mean value is 0.73 ± 0.25 km. Cirrus optical depth is less than 0.14. Cirrus cloud-base height and thickness showed a negative correlation. Optical thickness and thickness were positively related.

References

[1]  Hansen, J., Sto, M. and Ruedy, R. (1997) Radiative Forcing and Climate Response. Geophysical Research, 102, 6831-6834.
https://doi.org/10.1029/96JD03436
[2]  Liou, K.N. (1986) Influence of Clouds and Climate Processes: A Global Perspective. Monthly Weather Review, 114, 1167-1198.
https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2
[3]  Platt, C. (1973) Lidar and Radioinetric Observations of Cirrus Clouds. Journal of the Atmospheric Sciences, 30, 1191-1204.
https://doi.org/10.1175/1520-0469(1973)030<1191:LAROOC>2.0.CO;2
[4]  Sassen, K. and Campbell, J.R. (2001) A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties. Journal of the Atmospheric Sciences, 58, 481-496.
https://doi.org/10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2
[5]  Chou, M.D., Lindzen, R.S. and Hou, A.Y. (2002) Comments on “The Iris Hypothesis: A Negative or Positive Cloud Feedback?” Journal of Climate, 15, 2713-2715.
https://doi.org/10.1175/1520-0442(2002)015<2713:COTIHA>2.0.CO;2
[6]  Lin, B., et al. (2002) The Iris Hypothesis: A Negative or Positive Cloud Feedback? Journal of Climate, 15, 3-7.
https://doi.org/10.1175/1520-0442(2002)015<0003:TIHANO>2.0.CO;2
[7]  Parry, M.L., et al. (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[8]  Stephens, G., et al. (1990) The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback. Journal of the Atmospheric Sciences, 47, 1742-1753.
https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2
[9]  Lynch, D., et al. (2002) Cirrus. Oxford University Press, New York, 480 p.
[10]  Spinhirne, J.D. (1993) Micropulse Lidar. IEEE Transactions on Geoscience and Remote Sensing, 31, 48-54.
[11]  Sassen, K. and Cho, B.S. (1992) Subvisible-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research. Journal of Applied Meteorology, 31, 1275-1285.
https://doi.org/10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2
[12]  David, R.D. and Lawrence, F.R. (1990) A Summer of Physical Properties of Cirrus Clouds. Journal of Applied Meteorology, 29, 970-978.
https://doi.org/10.1175/1520-0450(1990)029<0970:ASOTPP>2.0.CO;2
[13]  刘瑞金, 张镭, 王宏斌, 等. 半干旱地区卷云特征的激光雷达探测[J]. 大气科学, 2011, 35(5): 863-870.
[14]  卜令兵, 庄一洲, 徐中兵, 等. 用于激光云高仪的微分增强云检测方法[J]. 红外与激光工程, 2013(8): 2226-2230.
[15]  邱金桓, 郑斯平, 黄其荣, 等. 北京地区对流层中上部云和气溶胶的激光雷达探测[J]. 大气科学, 2003, 27(1): 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133