全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数字可编码超表面的无线通信系统设计与实现
Design and Implementation of Wireless Communication System Based on Digital Coding Metasurface

DOI: 10.12677/HJWC.2019.92008, PP. 59-70

Keywords: 数字可编码,超表面,无线通信,直接调制
Digital Coding
, Metasurface, Wireless Communication, Direct Modulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

人工电磁超材料因其独特的物理特性不断受到研究者的关注。目前在数字成像、电磁学、雷达等多个领域已有许多超材料的应用实例。本文利用数字可编码超表面(超材料中的一种)设计和实现了一种无线通信系统,在电磁超材料与无线通信之间建立起新的桥梁。此系统利用数字可编码超表面,完成无线信号从基带到射频的直接调制,舍弃了传统无线通信系统中利用混频器等复杂模拟器件完成载波调制的射频架构。同时通过FPGA的硬件开发和实验证明,基于数字可编程超表面的无线通信系统可在3.8 GHz载频下利用FSK (Frequency Shift Keying,频移键控)的数字调制方式正常稳定地传输图片等多媒体信号。这种超表面与无线通信的结合,给构建新型通信系统架构提供了一种崭新的思路和可能。
Artificial electromagnetic metamaterials continue to receive the attention of researchers due to their unique physical properties. There are many application examples of metamaterials in various fields such as digital imaging, electromagnetics, and radar. This paper designs and implements a wireless communication system using a digital coding metasurface (one kind of the metamaterials) to establish a new bridge between electromagnetic metamaterials and wireless communication. The system utilizes a digital coding metasurface to perform direct modulation of the wireless signal from the baseband to the radio frequency. In addition, the experiment based on LabVIEW FPGA proves that the wireless communication system based on metasurface can transmit pictures smoothly and stably at 3.8 GHz with FSK modulation. This combination of metasurface and wireless communication also provides a new idea and possibility to build a new communication system architecture.

References

[1]  Holloway, C.L., Kuester, E.F., Gordon, J.A., OHara, J., Booth, J. and Smith, D.R. (2012) An Overview of the Theory and Applica-tions of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas and Propagation Magazine, 54, 10-35.
https://doi.org/10.1109/MAP.2012.6230714
[2]  Pereda, A.T., Caminita, F., Martini, E. and Ederra, I. (2018) Experimental Validation of a Ku-Band Dual-Circularly Polarized Metasurface Antenna. IEEE Transactions on Antennas and Propagation, 66, 1153-1159.
https://doi.org/10.1109/TAP.2018.2794395
[3]  Zvolensky, T., Gollub, J.N., Marks, D.L. and Smith, D.R. (2017) Design and Analysis of a W-Band Metasurface-Based Computational Imaging System. IEEE Access, 5, 9911-9918.
https://doi.org/10.1109/ACCESS.2017.2703860
[4]  Cui, T.J., Liu, S. and Li, L.L. (2016) Information Entropy of Coding Metasurface. Light: Science & Applications, 5, e16172.
https://doi.org/10.1038/lsa.2016.172
[5]  纪静文, 蔡超时, 胡峰, 梁云英. OFDM系统中CF-ACE PAPR技术对功放非线性的抑制[J]. 中国传媒大学学报自然科学版, 2011, 18(3): 23-29.
[6]  力智, 胡学龙. 单载波与多载波调制系统中调制识别算法研究[J]. 国外电子测量技术, 2016, 35(11): 73-75.
[7]  周乐柱, 李斗, 郭文嘉. 卫星通信多波束天线综述[J]. 电子学报, 2001, 29(6): 824-828.
[8]  吴迪, 田茂, 皮楚, 何昉明. 共形天线阵列极化分集问题[J]. 太赫兹科学与电子信息学报, 2018, 16(3): 445-451.
[9]  Liaskos, C. and Nie, S. (2018) A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Communications Magazine, 56, 162-169.
https://doi.org/10.1109/MCOM.2018.1700659
[10]  Huang, C.H. and Alexandropoulos, G.C. (2018) Energy Efficient Mul-ti-User MISO Communication Using Low Resolution Large Intelligent Surfaces. IEEE GLOBECOM. arXiv:1809.05397.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133