全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宽带功率放大器记忆非线性失真补偿算法的仿真与性能优化
Simulation and Performance Optimization of Memory Nonlinear Distortion Compensation Algorithm for Wideband Power Amplifier

DOI: 10.12677/HJWC.2019.92007, PP. 47-58

Keywords: 功率放大器,预失真技术,Volterra级数,参数辨识
Power Amplifier
, Predistortion Technology, Volterra Series, Parameter Identification

Full-Text   Cite this paper   Add to My Lib

Abstract:

功率放大器(PA)是无线通信中的重要的非线性器件。PA的记忆非线性恶化了通信系统的传输性能。采用预失真技术可以降低PA的记忆非线性带来的系统性能损失。本文对PA记忆非线性自适应预失真技术进行研究,建立基于全内核Volterra级数的自适应预失真模型,借助LS、RLS、LMS和Kalman滤波算法对全内核Volterra预失真模型的内核进行参数辨识,并以最小均方误差(MSE)作为指标对四种算法进行深度优化。仿真结果表明,Kalman滤波算法具有最优的参数辨识精度,在噪声环境下,基于Kalman滤波自适应预失真器依然能够有效地补偿PA的记忆非线性,本文的研究为进一步理解和研究无线通信系统的自适应预失真技术提供参考。
The power amplifier (PA) is one of the most important nonlinear devices in wireless communication field. The memory-nonlinearity of the PA deteriorates the transmission performance of the communication system. The use of pre-distortion technology can reduce the system performance loss caused by the memory-nonlinearity of the PA. In this paper, the adaptive predistortion tech-nique of PA’s memory-nonlinearity is studied and an adaptive predistortion model based on full kernel Volterra series is established. The parameters of the full-core Volterra predistortion model are identified by LS, RLS, LMS and Kalman filtering algorithms. The four algorithms are deeply optimized with the minimum mean square error (MSE) as an indicator. The simulation results show that the Kalman filtering algorithm has the best parameter identification accuracy. In the noise environment, the adaptive predistorter based on Kalman filter can still effectively compensate the memory-nonlinearity of PA. The research in this paper provides a reference for further understanding and research on adaptive predistortion technology of wireless communication systems.

References

[1]  Kenney, J.S. and Fedorenko, P. (2006) Identification of RF Power Amplifier Memory Effect Origins Using Third-Order Intermodu-lation Distortion Amplitude and Phase Asymmetry. International Microwave Symposium Digest.
[2]  Billings, S.A. (1980) Book Review: The Volterra and Wiener Theories of Nonlinear Systems. IEE Proceedings D Control Theory and Applications, 127, 236.
https://doi.org/10.1049/ip-d.1980.0039
[3]  Zhu, A., Draxler, P.J., Yan, J.J., et al. (2008) Open-Loop Digital Predistorter for RF Power Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series. IEEE Transactions on Microwave Theory and Techniques, 56, 1524-1534.
https://doi.org/10.1109/TMTT.2008.925211
[4]  Zhou, D. and Debrunner, V.E. (2012) Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm. Microprocessors, 55, 120-133.
[5]  Kwong, R.H. and Johnston, E.W. (1992) A Variable Step Size LMS Algorithm. IEEE Transactions on Signal Processing, 40, 1633-1642.
https://doi.org/10.1109/78.143435
[6]  张玉梅, 南敬昌. 基于Saleh函数的功放行为模型研究[J]. 微电子学与计算机, 2010, 27(12): 121-123.
[7]  金哲. 宽带通信中有记忆射频功率放大器的建模与预失真方法[D]: [博士学位论文]. 杭州: 浙江大学, 2007.
[8]  Morgan, D.R., Ma, Z., Kim, J., et al. (2006) A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers. IEEE Transactions on Signal Processing, 54, 3852-3860.
https://doi.org/10.1109/TSP.2006.879264
[9]  王栋. 适用于宽带功率放大器的自适应数字预失真技术研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2017.
[10]  李宁. LMS自适应滤波算法的收敛性能研究与应用[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2009.
[11]  高明明, 湛素丽, 南敬昌. 稀疏的归一化功放模型及预失真应用[J]. 计算机应用研究, 2017, 34(10): 3032-3035.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133