全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

C4'-CF3-α-L-脱氧胸苷亚磷酰胺单体的合成
Synthesis of C4'-CF3-α-L-Deoxythymidine Phosphoramidite

DOI: 10.12677/HJCET.2019.92020, PP. 137-146

Keywords: 化学修饰,反义核酸,合成,C4'-CF3-α-L-脱氧胸苷
Chemical Modification
, Antisense Oligonucleotides, Synthesis, C4'-CF3-α-L-Deoxythymidine

Full-Text   Cite this paper   Add to My Lib

Abstract:

化学修饰是改善反义核酸成药性的重要手段。在本文的研究中,采用化学合成的方法,以已知的化合物(S)-1,3-二(苄氧基)-4-(1,3-二噻烷-2-基)丁-2-酮为原料,经过4步反应,得到苄基保护的C4'-CF3-β-L-脱氧胸苷5a和C4'-CF3-α-L-脱氧胸苷5b。然后通过氯化钯催化氢化脱除5b的苄基保护基,制得C4'-CF3-α-L-脱氧胸苷6。通过核磁共振1H谱、13C谱、19F谱和二维NOESY谱,确认了5a,5b和6的结构以及C4'和C1'的构型。经过两步常规反应,将6转化为C4'-CF3-α-L-脱氧胸苷亚磷酰胺8,并使用1H谱,31P谱,ESI-MS高分辨率质谱确定了最终目标产物8的结构正确性。
Chemical modification is an essential approach to make antisense oligonucleotides drug-like mol-ecules. In this paper, we report the synthesis of C4'-CF3-α-L-deoxythymidine phosphoramidite. The synthesis started from the known compound 1, which was efficiently transformed to benzylation protected C4'-CF3-β-L-deoxythymidine 5a and C4'-CF3-α-L-deoxythymidine 5b in four steps. Debenzylation of 5b using PdCl2/H2 afforded C4'-CF3-α-L-deoxythymidine 6. Based on 1D 1H, 13C, 19F and 2D NOESY NMR spectra, the structures of 5a, 5b and 6 were unambiguously characterized. Compound 6 was converted to the phosphoramidite in two routine reaction steps, and the structure of target product 8 was confirmed by 1H NMR spectrum, 131P NMR spectrum, and ESI-MS high resolution mass spectrometry.

References

[1]  Deleavey, G.F. and Damha, M.J. (2012) Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing. Chemistry & Biology, 19, 937-954.
https://doi.org/10.1016/j.chembiol.2012.07.011
[2]  Lima, W.F., Rose, J.B., Nichols, J.G., Wu, H.J., Migawa, M.T., Wyrzykiewicz, T.K., Siwkowski, A.M. and Crooke, S.T. (2007) Human RNase H1 Discriminates between Subtle Variations in the Structure of the Heteroduplex Substrate. Molecular Pharmacology, 71, 83-91.
https://doi.org/10.1124/mol.106.025015
[3]  Cerritelli, S.M. and Crouch, R.J. (2009) Ribonuclease H: The Enzymes in Eukaryotes. The FEBS Journal, 276, 1494-1505.
https://doi.org/10.1111/j.1742-4658.2009.06908.x
[4]  Juliano, R.L. (2016) The Delivery of Therapeutic Oligo-nucleotides. Nucleic Acids Research, 44, 6518-6548.
https://doi.org/10.1093/nar/gkw236
[5]  Huang, L. and Liu, Y. (2011) In Vivo Delivery of RNAi with Lipid-Based Nanoparticles. Annual Review of Biomedical Engineering, 13, 507-530.
https://doi.org/10.1146/annurev-bioeng-071910-124709
[6]  Klinman, D.M., Ae-Kyung, Y., Beaucage, S.L. and Conover, J. (1996) CpG Motifs Present in Bacterial DNA Rapidly Induce Lymphocytes to Secrete Interleukin 6, Inter-leukin 12, and Interferon γ. Proceedings of the National Academy of Sciences of the United States of America, 93, 2879-2883.
https://doi.org/10.1073/pnas.93.7.2879
[7]  Godeau, G., Arnion, H., Brun, C., Staedel, C. and Barthélémy, P. (2010) Fluorocarbon Oligonucleotide Conjugates for Nucleic Acids Delivery. MedChemComm, 1, 76-78.
https://doi.org/10.1039/c0md00054j
[8]  Sakai, T., Matsushita, S., Arakawa, S., Kawai, A. and Mori, Y. (2014) Synthetic Study of Gymnocin-A: Synthesis of the ABC Ring Fragment. Tetrahedron Letters, 55, 6557-6560.
https://doi.org/10.1016/j.tetlet.2014.10.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133