全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铈基过渡金属复合氧化物上氨催化还原NOx的构效关系
Relationship of Structure-Activity for Catalytic Reduction of NOx by NH3 on Composite Oxides Containing Ce and Transition Metal

DOI: 10.12677/HJCET.2019.92016, PP. 107-116

Keywords: 过渡金属,铈,催化还原,氮氧化物
Transition Metal
, Ce, Catalytic Reduction, NOx

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用共沉淀法制备了一系列铈基过渡金属复合氧化物催化剂,通过催化活性评价和催化表征考察了铈基过渡金属复合氧化物催化还原NOx的构效关系。研究表明:铈基过渡金属复合氧化物催化剂活性为4Ce1Ni > 4Ce1Mn > 4Ce1Cu > CeO2 > 4Ce1Cr。4Ce1Ni催化剂在325℃时NOx最大转化率可达92%,同时其具有良好的抗水性。铈基过渡金属复合氧化物催化剂的活性与其物化结构、表面活性氧物种比值和过渡金属活性组分的形态有关。催化剂的比表面积和Olatt/Oads比值大小均为4Ce1Ni > 4Ce1Mn > 4Ce1Cu > CeO2 > 4Ce1Cr,与催化活性成正相关性。4Ce1Ni、4Ce1Mn、4Ce1Cu、CeO2和4Ce1Cr催化剂中活性组分分别为Ni2+、Mn3+和Mn4+、Cu2+和Cr6+,其中Ni2+的催化活性最强,Mn3+和Mn4+次之。
Series of composite oxides containing Ce and transition metal were prepared by coprecipitation method. Relationship of structure-activity for catalytic reduction of NOx by NH3 on composite oxides containing Ce and transition metal was investigated by activity test and catalyst characterization. It shows that NOx conversion over catalysts decreased in the order of 4Ce1Ni > 4Ce1Mn > 4Ce1Cu > CeO2 > 4Ce1Cr. 4Ce1Ni with good water tolerance exhibits the highest NOx conversion of 92% at 325?C. The activity of composite oxides containing Ce and transition metal catalysts is related to their physico-chemical structure, active oxygen species and active sites of transition metal. Both surface area and the ratio of Olatt/Oads decreased in the order of 4Ce1Ni > 4Ce1Mn > 4Ce1Cu > CeO2 > 4Ce1Cr, which showed positive correlation with activity. The active components of 4Ce1Ni, 4Ce1Mn, 4Ce1Cu, CeO2 and 4Ce1Cr, are Ni2+, Mn3+ and Mn4+, Cu2+ and Cr6+ respectively. The catalytic activity of Ni2+ is the highest, followed by 3+ and Mn4+.

References

[1]  中华人民共和国环境保护部.中国环境统计年报[R]. 2012-2017.
[2]  Busca, G., Lietti, L., Ramis, G. and Berti, F. (1998) Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by Ammonia over Oxide Cat-alysts: A Review. Applied Catalysis B: Environmental, 18, 1-36.
https://doi.org/10.1016/S0926-3373(98)00040-X
[3]  Hu, Y., Griffiths, K. and Norton, P.R. (2009) Surface Sci-ence Studies of Selective Catalytic Reduction of NO: Progress in the Last Ten Years. Surface Science, 603, 1740-1750.
https://doi.org/10.1016/j.susc.2008.09.051
[4]  Kang, M., Kim, D.J., Park, E.D., Kim, J.M. and Eyring, E.M. (2006) Two-Stage Catalyst System for Selective Catalytic Reduction of NOx by NH3 at Low Temperatures. Applied Catalysis B: Environmental, 68, 21-27.
https://doi.org/10.1016/j.apcatb.2006.07.013
[5]  Li, J.H., Chang, H.Z., Ma, L., Hao, J.M. and Yang, R.T. (2011) Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Metal Oxide and Zeolite Catalysts—A Review. Catalysis Today, 175, 147-156.
https://doi.org/10.1016/j.cattod.2011.03.034
[6]  Shan, W. and Song, H. (2015) Catalysts for the Selective Cata-lytic Reduction of NOx with NH3 at Low Temperature. Catalysis Science &Technology, 5, 4280-4288.
https://doi.org/10.1039/C5CY00737B
[7]  Fu, M.F., Li, C.T., Lu, P., Qu, L., Zhang, M.Y., Zhou, Y., Yu, M.G. and Fang, Y. (2014) A Review on Selective Catalytic Reduction of NOx by Supported Catalysts at 100-300 ?C—Catalysts, Mechanism, Kinetics. Catalysis Science & Technology, 4, 14-25.
https://doi.org/10.1039/C3CY00414G
[8]  Chen, L., Si, Z.C., Wu, X.D., Weng, D., Ruan, R. and Yu, J. (2014) Rare Earth Containing Catalysts for Selective Catalytic Reduction of NOx with Ammonia: A Review. Journal of Rare Earths, 32, 907-917.
https://doi.org/10.1016/S1002-0721(14)60162-9
[9]  Tian, W., Yang, H., Fan, X. and Zhang, X. (2011) Catalytic Reduction of NOx with NH3 over Different-Shaped MnO2 at Low Temperature. Journal of Hazardous Materials, 188, 105-109.
https://doi.org/10.1016/j.jhazmat.2011.01.078
[10]  Liu, Y., Xu, J., Li, H., Cai, S., Hu, H., Fang, C., Shi, L. and Zhang, D. (2015) Rational Design and in Situ Fabrication of MnO2@NiCo2O4 Nanowire Arrays on Ni Foam as High-Performance Monolith de-NOx Catalysts. Journal of Materials Chemistry A, 3, 11543-11553.
https://doi.org/10.1039/C5TA01212K
[11]  Ma, Z., Yang, H., Li, Q., Zheng, J. and Zhang, X. (2012) Catalytic Reduction of NO by NH3 over Fe-Cu-OX/ CNTs-TiO2 Composites at Low Temperature. Applied Catalysis A: General, 427-428, 43-48.
https://doi.org/10.1016/j.apcata.2012.03.028
[12]  Jiang, B., Liu, Y. and Wu, Z. (2009) Low-Temperature Selective Catalytic Reduction of NO on MnOx/TiO2 Prepared by Different Methods. Journal of Hazardous Materials, 162, 1249-1254.
https://doi.org/10.1016/j.jhazmat.2008.06.013
[13]  Han, J., Meeprasert, J., Maitarad, P., Nam-muangruk, S., Shi, L. and Zhang, D. (2016) Investigation of the Facet- Dependent Catalytic Performance of Fe2O3/CeO2 for the Selective Catalytic Reduction of NO with NH3. The Journal of Physical Chemistry C, 120, 1523-1533.
https://doi.org/10.1021/acs.jpcc.5b09834
[14]  Qi, G.S., Yang, R.T. and Chang, R. (2004) MnOx-CeO2 Mixed Oxides Prepared by Co-Precipitation for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Applied Catalysis B: Environmental, 51, 93-106.
https://doi.org/10.1016/j.apcatb.2004.01.023
[15]  Lee, S.M., Park, K.H. and Hong, S.C. (2012) MnOx/CeO2-TiO2 Mixed Oxide Catalysts for the Selective Catalytic Reduction of NO with NH3 at Low Temperature. Chemical Engi-neering Journal, 195-196, 323-331.
https://doi.org/10.1016/j.cej.2012.05.009
[16]  Liu, Z.M., Yi, Y., Zhang, S.X., Zhu, T.L., Zhu, J.Z. and Wang, J.G. (2013) Selective Catalytic Reduction of NOx with NH3 over Mn-Ce Mixed Oxide Catalyst at Low Temperatures. Ca-talysis Today, 216, 76-81.
https://doi.org/10.1016/j.cattod.2013.06.009
[17]  Wei, Y.J., Sun, Y., Su, W. and Liu, J. (2015) MnO2 Doped CeO2 with Tailored 3-D Channels Exhibits Excellent Performance for NH3-SCR of NO. RSC Advances, 5, 26231-26235.
https://doi.org/10.1039/C5RA01355K
[18]  Liu, C., Shi, J.W., Gao, C. and Niu, C. (2016) Manganese Oxide-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx with NH3: A Review. Applied Catalysis A: General, 522, 54-69.
https://doi.org/10.1016/j.apcata.2016.04.023
[19]  Jampaiah, D., Ippolito, S.J., Sabri, Y.M., Reddy, B.M. and Bhargava, S.K. (2015) Highly Efficient Nanosized Mn and Fe Codoped Ceria-Based Solid Solutions for Elemental Mercury Removal at Low Flue Gas Temperatures. Catalysis Science & Technology, 5, 2913-2924.
https://doi.org/10.1039/C5CY00231A
[20]  Venkataswamy, P., Rao, K.N., Jampaiah, D. and Reddy, B.M. (2015) Nanostructured Manganese Doped Ceria Solid Solutions for CO Oxidation at Lower Temperatures. Applied Catalysis B: Environmental, 162, 122-132.
https://doi.org/10.1016/j.apcatb.2014.06.038
[21]  He, C., Yu, Y.K., Shi, J.W., Shen, Q. and Liu, H. (2015) Mesostructured Cu-Mn-Ce-O Composites with Homogeneous Bulk Composition for Chlorobenzene Removal: Catalytic Performance and Microactivationcourse. Materials Chemistry and Physics, 157, 87-100.
https://doi.org/10.1016/j.matchemphys.2015.03.020
[22]  He, C., Liu, H., Shi, J.W., Ma, C., Pan, H. and Li, G. (2015) Anionic Starch-Induced Cu-Based Composite with Flake- Likemesostructure for Gas-Phase Propanal Efficient Removal. Journal of Colloid and Interface Science, 454, 216-225.
https://doi.org/10.1016/j.jcis.2015.05.021
[23]  仲蕾. 铬基催化剂的制备及其催化氧化NO的性能研究[D]: [博士学位论文]. 南京: 南京理工大学, 2016.
[24]  Pan, H., Jian, Y., Chen, C., Hao, Z.P., Shen, Z.X. and Liu, H.X. (2017) Sphere-Shaped Mn3O4 Catalyst with Remarkable Low-Temperature Activity for Methyl-Ethyl-Ketone Combustion. Environmental Science & Technology, 51, 6288-6297.
https://doi.org/10.1021/acs.est.7b00136
[25]  Mansour, A.N. (1994) Characterization of Beta-Ni(OH)2 by XPS. Surface Science Spectra, 3, 239-246.
https://doi.org/10.1116/1.1247752

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133