|
凌源–宁城盆地牛营子地区辽凌D1井高于庄组烃源岩地球化学特征
|
Abstract:
[1] | 肖飞, 李永飞, 郜晓勇, 等. 凌源-宁城盆地牛营子地区侏罗系海房沟组烃源岩地球化学特征: 以牛D1井为例[J]. 矿物岩石地球化学通报, 2018, 37(1): 94-102. |
[2] | Gregory, A.D., Meng, J., Cao, W., et al. (2009) Triassic and Jurassic Tectonics in the Eastern Yanshan Belt, North China: Insights from the Controversial Dengzhangzi Formation and Its Neighboring Units. Earth Science Frontiers, 16, 69-86. https://doi.org/10.1016/S1872-5791(08)60090-1 |
[3] | 李美俊, 王铁冠, 张卫彪. 塔河油田奥陶系原油C(26)降胆甾烷分布特征及地质意义[J]. 石油实验地质, 2015, 37(1): 64-70. |
[4] | Peters, K.E. and Walters, C.C. (2005) The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History Seconded. Cambridge University Press, Cambridge, 612-613. |
[5] | Brooks, J.D. and Smith, J.W. (1969) The Diagenesis of Plant Lipids during the Formation of Coal, Petroleum and Natural Gas-II. Coalification and the Formation of Oil and Gas in the Gippsland Basin. Geochimica et Cosmochimica Acta, 33, 1183-1194. https://doi.org/10.1016/0016-7037(69)90040-4 |
[6] | Bray, E.E. and Evans, E.D. (1961) Distribution of n-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22, 2-15. https://doi.org/10.1016/0016-7037(61)90069-2 |
[7] | Scalan, E.S. and Smith, J.E. (1970) An Improved Measure of the Odd-Even Predominance in the Normal Alkanes of Sediment Extracts and Petroleum. Geochimica et Cosmochimica Acta, 34, 611-620.
https://doi.org/10.1016/0016-7037(70)90019-0 |
[8] | Bourbonniere, R.A. and Meyers, P.A. (1996) Sedimentary Geolipid Records of Historical Changes in the Watersheds and Productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, 352-359.
https://doi.org/10.4319/lo.1996.41.2.0352 |
[9] | Ourisson, G. and Albrecht, P. (1982) Predictive Microbial Biochemistry from Molecular Fossils to Procaryotic Membranes. Trends in Biochemical Sciences, 7, 236-239. https://doi.org/10.1016/0968-0004(82)90028-7 |
[10] | Ourisson, G. and Rohmer, M. (1987) Prokaryotic Hopanoids and Other Polyterpenoid Sterol Surrogates. Annual Review of Microbiology, 41, 301-33. https://doi.org/10.1146/annurev.mi.41.100187.001505 |
[11] | Aquino Neto, F.R. (1983) Occurrence and Formation of Tricyclic Terpanes in Sediments and Petroleums. Advances in Organic Geochemistry, John Wiley & Sons Ltd., Chichester, 659-667. |
[12] | Azevedo, D.A. (1992) Novel Series of Tricyclic Aromatic Terpanes Characterized in Tasmanian Tasmanite. Organic Geochemistry, 18, 9-16. https://doi.org/10.1016/0146-6380(92)90138-N |
[13] | Xiao, H. (2018) Occurrence and Distribution of Unusual Tri- and Tetracyclic Terpanes and Their Geochemical Significance in Some Paleogene Oils from China. Energy & Fuels, 32, 7393-7403.
https://doi.org/10.1021/acs.energyfuels.8b01025 |
[14] | Volk, H. (2005) Geochemical Comparison of Fluid Inclusion and Present-Day Oil Accumulations in the Papuan Foreland-Evidence for Previously Unrecognised Petroleum Source Rocks. Organic Geochemistry, 36, 29-51.
https://doi.org/10.1016/j.orggeochem.2004.07.018 |
[15] | Zumberge, J.E. (1987) Prediction of Source Rock Characteristics Based on Terpane Biomarkers in Crude Oils: A Multivariate Statistical Approach. Geochimica et Cosmochimica Acta, 51, 1625-1637.
https://doi.org/10.1016/0016-7037(87)90343-7 |
[16] | Huang, H. (2017) Impacts of Source Input and Secondary Alteration on the Extended Tricyclic Terpane Ratio: A Case Study from Palaeozoic Sourced Oils and Condensates in the Tarim Basin, NW China. Organic Geochemistry, 112, 158-169. https://doi.org/10.1016/j.orggeochem.2017.07.012 |
[17] | Tao, S. (2015) Geochemical Application of Tricyclic and Tetracyclic Terpanes Biomarkers in Crude Oils of NW China. Marine & Petroleum Geology, 67, 460-467. https://doi.org/10.1016/j.marpetgeo.2015.05.030 |
[18] | Seifert, W.K. and Moldowan, J.M. (1980) The Effect of Thermal Stress on Source-Rock Quality as Measured by Hopane Stereochemistry. Physics & Chemistry of the Earth, 12, 229-237. https://doi.org/10.1016/0079-1946(79)90107-1 |
[19] | Rullkotter, J. and Marzi, R. (1988) Natural and Artificial Maturation of Biological Markers in a Toarcian Shale from Northern Germany. Organic Geochemistry, 13, 639-645. https://doi.org/10.1016/0146-6380(88)90084-8 |
[20] | Saksen, G.H. and Bohacs, K.M. (1995) Geological Controls of Source Rock Geochemistry through Relative Sea Level; Triassic, Barents Sea. Springer, Berlin, 25-50. |
[21] | Zumberge, J.E. (1987) Terpenoid Biomarker Distributions in Low Maturity Crude Oils. Organic Geochemistry, 11, 479-496. https://doi.org/10.1016/0146-6380(87)90004-0 |
[22] | Damsté, J.S.S. (1995) Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 59, 1895-1900. https://doi.org/10.1016/0016-7037(95)00073-9 |
[23] | Xiao, H. (2019) Geochemical Characteristics of Cretaceous Yogou Formation Source Rocks and Oil-Source Correlation within a Sequence Stratigraphic Framework in the Termit Basin, Niger. Journal of Petroleum Science and Engineering, 172, 360-372. https://doi.org/10.1016/j.petrol.2018.09.082 |
[24] | Moldowan, J.M. and Seifert, W.K. (1985) Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rock. American Association of Petroleum Geologists, 69, 1255-1268. |
[25] | Enric (2000) A New Geochemical-Sequence Stratigraphic Model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bulletin, 84, 12-44. |