全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

凌源–宁城盆地牛营子地区辽凌D1井高于庄组烃源岩地球化学特征
The Geochemical Characteristics of Source Rock of the Gaoyuzhuang Formation of Well LLD1 in Niuyingzi Area of Lingyuan-Ningcheng Basin

DOI: 10.12677/JOGT.2019.411004, PP. 19-25

Keywords: 烃源岩,生物标志物,中元古界,牛营子地区,凌源–宁城盆地
Source Rock
, Biomarker, Mesoproterozoic, Niuyingzi Area, Lingyuan-Ningcheng Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

辽西凌源–宁城盆地牛营子地区钻探的辽凌D1井,在中元古界高于庄组发现了油气显示。系统地分析了高于庄组烃源岩的地球化学特征,研究结果表明:烃源岩饱和烃中正构烷烃分布基本完整,呈明显的单峰态前峰型,具有C27规则甾烷优势,指示了有机质来源以低等水生生物贡献为主;较高的孕甾烷相对含量和C19~C29三环萜烷/C29~C35藿烷比值,以及较高的甾烷和升藿烷成熟度参数值,均表明烃源岩出于成熟阶段;而低的Pr/Ph和较高伽马蜡烷含量指示了偏还原的沉积环境。
Well LLD1 was drilled in Niuyingzi Area of Lingyuan-Ningcheng Basin in the west of Liaoning Province. Oil and gas indications were found in the Gaoyuzhuang Formation in the Mesoprotero-zoic. The geochemical characteristics of the source rocks were systematically analyzed in the study. The results indicate that the distribution of n-alkanes series in saturated hydrocarbons is substantially complete in all source rocks with an evident unimodal pattern. The distribution of C27~C29 regular steranes presents a dominance of C27 steranes, indicates a predominantly aquatic organisms input in the organic matter of relative source rocks. There exist high relative contents of pregnane and C19~C29 tricyclic terpane/C29~C35 hopane ratio, as well as maturity parameters related to steranes and hopanes; it also indicates that all source rocks are matured. Moreover, a lower (Pr/Ph) ratio and relatively high gammacerane concentration indicate an anoxic deposition environment of partial reduction.

References

[1]  肖飞, 李永飞, 郜晓勇, 等. 凌源-宁城盆地牛营子地区侏罗系海房沟组烃源岩地球化学特征: 以牛D1井为例[J]. 矿物岩石地球化学通报, 2018, 37(1): 94-102.
[2]  Gregory, A.D., Meng, J., Cao, W., et al. (2009) Triassic and Jurassic Tectonics in the Eastern Yanshan Belt, North China: Insights from the Controversial Dengzhangzi Formation and Its Neighboring Units. Earth Science Frontiers, 16, 69-86.
https://doi.org/10.1016/S1872-5791(08)60090-1
[3]  李美俊, 王铁冠, 张卫彪. 塔河油田奥陶系原油C(26)降胆甾烷分布特征及地质意义[J]. 石油实验地质, 2015, 37(1): 64-70.
[4]  Peters, K.E. and Walters, C.C. (2005) The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History Seconded. Cambridge University Press, Cambridge, 612-613.
[5]  Brooks, J.D. and Smith, J.W. (1969) The Diagenesis of Plant Lipids during the Formation of Coal, Petroleum and Natural Gas-II. Coalification and the Formation of Oil and Gas in the Gippsland Basin. Geochimica et Cosmochimica Acta, 33, 1183-1194.
https://doi.org/10.1016/0016-7037(69)90040-4
[6]  Bray, E.E. and Evans, E.D. (1961) Distribution of n-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22, 2-15.
https://doi.org/10.1016/0016-7037(61)90069-2
[7]  Scalan, E.S. and Smith, J.E. (1970) An Improved Measure of the Odd-Even Predominance in the Normal Alkanes of Sediment Extracts and Petroleum. Geochimica et Cosmochimica Acta, 34, 611-620.
https://doi.org/10.1016/0016-7037(70)90019-0
[8]  Bourbonniere, R.A. and Meyers, P.A. (1996) Sedimentary Geolipid Records of Historical Changes in the Watersheds and Productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, 352-359.
https://doi.org/10.4319/lo.1996.41.2.0352
[9]  Ourisson, G. and Albrecht, P. (1982) Predictive Microbial Biochemistry from Molecular Fossils to Procaryotic Membranes. Trends in Biochemical Sciences, 7, 236-239.
https://doi.org/10.1016/0968-0004(82)90028-7
[10]  Ourisson, G. and Rohmer, M. (1987) Prokaryotic Hopanoids and Other Polyterpenoid Sterol Surrogates. Annual Review of Microbiology, 41, 301-33.
https://doi.org/10.1146/annurev.mi.41.100187.001505
[11]  Aquino Neto, F.R. (1983) Occurrence and Formation of Tricyclic Terpanes in Sediments and Petroleums. Advances in Organic Geochemistry, John Wiley & Sons Ltd., Chichester, 659-667.
[12]  Azevedo, D.A. (1992) Novel Series of Tricyclic Aromatic Terpanes Characterized in Tasmanian Tasmanite. Organic Geochemistry, 18, 9-16.
https://doi.org/10.1016/0146-6380(92)90138-N
[13]  Xiao, H. (2018) Occurrence and Distribution of Unusual Tri- and Tetracyclic Terpanes and Their Geochemical Significance in Some Paleogene Oils from China. Energy & Fuels, 32, 7393-7403.
https://doi.org/10.1021/acs.energyfuels.8b01025
[14]  Volk, H. (2005) Geochemical Comparison of Fluid Inclusion and Present-Day Oil Accumulations in the Papuan Foreland-Evidence for Previously Unrecognised Petroleum Source Rocks. Organic Geochemistry, 36, 29-51.
https://doi.org/10.1016/j.orggeochem.2004.07.018
[15]  Zumberge, J.E. (1987) Prediction of Source Rock Characteristics Based on Terpane Biomarkers in Crude Oils: A Multivariate Statistical Approach. Geochimica et Cosmochimica Acta, 51, 1625-1637.
https://doi.org/10.1016/0016-7037(87)90343-7
[16]  Huang, H. (2017) Impacts of Source Input and Secondary Alteration on the Extended Tricyclic Terpane Ratio: A Case Study from Palaeozoic Sourced Oils and Condensates in the Tarim Basin, NW China. Organic Geochemistry, 112, 158-169.
https://doi.org/10.1016/j.orggeochem.2017.07.012
[17]  Tao, S. (2015) Geochemical Application of Tricyclic and Tetracyclic Terpanes Biomarkers in Crude Oils of NW China. Marine & Petroleum Geology, 67, 460-467.
https://doi.org/10.1016/j.marpetgeo.2015.05.030
[18]  Seifert, W.K. and Moldowan, J.M. (1980) The Effect of Thermal Stress on Source-Rock Quality as Measured by Hopane Stereochemistry. Physics & Chemistry of the Earth, 12, 229-237.
https://doi.org/10.1016/0079-1946(79)90107-1
[19]  Rullkotter, J. and Marzi, R. (1988) Natural and Artificial Maturation of Biological Markers in a Toarcian Shale from Northern Germany. Organic Geochemistry, 13, 639-645.
https://doi.org/10.1016/0146-6380(88)90084-8
[20]  Saksen, G.H. and Bohacs, K.M. (1995) Geological Controls of Source Rock Geochemistry through Relative Sea Level; Triassic, Barents Sea. Springer, Berlin, 25-50.
[21]  Zumberge, J.E. (1987) Terpenoid Biomarker Distributions in Low Maturity Crude Oils. Organic Geochemistry, 11, 479-496.
https://doi.org/10.1016/0146-6380(87)90004-0
[22]  Damsté, J.S.S. (1995) Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 59, 1895-1900.
https://doi.org/10.1016/0016-7037(95)00073-9
[23]  Xiao, H. (2019) Geochemical Characteristics of Cretaceous Yogou Formation Source Rocks and Oil-Source Correlation within a Sequence Stratigraphic Framework in the Termit Basin, Niger. Journal of Petroleum Science and Engineering, 172, 360-372.
https://doi.org/10.1016/j.petrol.2018.09.082
[24]  Moldowan, J.M. and Seifert, W.K. (1985) Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rock. American Association of Petroleum Geologists, 69, 1255-1268.
[25]  Enric (2000) A New Geochemical-Sequence Stratigraphic Model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bulletin, 84, 12-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133