全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

表观遗传对成骨细胞的调控作用及与骨质疏松的关系
The Role of Epigenetics in the Regulation of Osteoblasts and the Relationship with Osteoporosis

DOI: 10.12677/HJBM.2019.92014, PP. 96-102

Keywords: DNA甲基化,组蛋白修饰,骨质疏松
DNA Methylation
, Histone Modification, Osteoporosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前表观遗传学的研究正愈加受到重视,表观遗传不通过改变DNA的编码顺序也可以调控基因的表达,而DNA甲基化和组蛋白乙酰化作为表观遗传学的重要机制,更是目前表观遗传学研究的热门方向。DNA的甲基化和去甲基化,组蛋白的修饰之间是否达到平衡更是保证干细胞向成骨细胞正常分化的关键。基因表达时序性被打破不仅会影响到成骨分化,更与骨科类疾病,如骨质疏松有密切的联系。本文主要综述了近年来DNA甲基化、组蛋白乙酰化和miRNA对成骨细胞分化的调控作用及其与骨质疏松关系的最新研究进展。
At present, epigenetics is getting more and more attention. Epigenetics can also regulate gene expression without changing the coding sequence of DNA, and DNA methylation and histone acetylation, as important mechanisms of epigenetics, are the hot research directions of epigenetics. The balance between DNA methylation, demethylation and histone modification is the key to ensure the normal differentiation of stem cells into osteoblasts. The disruption of gene expression timing not only affects osteogenic differentiation, but also is closely related to orthopedic diseases, such as osteoporosis. In this paper, the recent advances in DNA methylation, histone acetylation and miRNA regulation of osteoblast and osteoclast differentiation and their relationship with osteoporosis were reviewed.

References

[1]  董锁花, 王芳, 包金风. DNA甲基化对细胞周期的调控[J]. 中国细胞生物学学报, 2018, 40(12): 2083-2089.
[2]  张蓓蓓, 商玮, 蔡辉. 骨质疏松的表观遗传学调控[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 5(10): 33.
[3]  Kyung, H. and Park, M. (2017) Epigenetic Regulation of Bone Cells. Connective Tissue Research, 58, 76-89.
https://doi.org/10.1080/03008207.2016.1177037
[4]  Tanner, C.G., Benjamin, J. and Wildman, A.J. (2018) Epi-genetic Remodeling and Modification to Preserve Skeletogenesis in Vivo. Connective Tissue Research, 59, 52-54.
https://doi.org/10.1080/03008207.2017.1408599
[5]  Sharifi, Z., Daniela, G., Kenjiro, A., et al. (2017) DNA Methylation Regulates Discrimination of Enhancers from Promoters through a H3K4me1-H3K4me3 Seesaw Mechanism. BMC Genomics, 18, 964.
https://doi.org/10.1186/s12864-017-4353-7
[6]  胡晓青, 张辛, 代岭辉, 朱敬先, 陈文庆, 傅欣, 敖英芳. 骨髓间充质干细胞成骨分化过程中Runx2的表观遗传学修饰[J]. 中国生物化学与分子生物学报, 2014, 30(2): 150-155.
https://doi.org/10.1055/s-0034-1387330
[7]  Zhang, R.P., Shao, J.Z. and Xiang, L.X. (2011) GADD45A Protein Plays an Essential Role in Active DNA Demethylation during Terminal Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 286, 41083-41094.
https://doi.org/10.1074/jbc.M111.258715
[8]  Jesus, D. and Carolina, S. (2011) DNA Methylation Contributes to the Regulation of Sclerostin Expression in Human Osteocytes. Journal of Bone and Mineral Research, 27, 926-937.
https://doi.org/10.1002/jbmr.1491
[9]  Arnsdorf, E.J., Tummala, P., Castillo, A.B., et al. (2010) The Epigenetic Mechanism of Mechanically Induced Osteogenic Differentiation. Journal of Biomechanics, 43, 2881-2886.
https://doi.org/10.1016/j.jbiomech.2010.07.033
[10]  Hupkes, M., Someren, E.P., Middelkamp, S.H., et al. (2011) DNA Methylation Restricts Spontaneous Multi-Lineage Differentiation. Biochimica et Biophysica Acta, 1813, 839-849.
https://doi.org/10.1016/j.bbamcr.2011.01.022
[11]  Lee, J.Y., Lee, Y.M., Kim, M.J., Choi, J.Y., et al. (2006) Methylation of the Mouse DIx5 and Osx Gene Promoters Regulation Cell Type-Specific Gene Expression. Molecular Cell, 22, 182-188.
[12]  王维, 孟智启, 石放雄. 组蛋自修饰及其生物学效应[J]. 遗传, 2012, 34(7): 810-818.
https://doi.org/10.3724/SP.J.1005.2012.00810
[13]  Sun, J.Y. and Kyunghwan, K. (2018) Histone Tail Cleavage as a Novel Epigenetic Regulatory Mechanism for Gene Expression. BMB Reports, 5, 211-218.
https://doi.org/10.5483/BMBRep.2018.51.5.053
[14]  Hesse, E., Saito, H., Kiviranta, R., et al. (2010) Zfp521 Controls Bone Mass by HDAC3-Dependent Attenuation of Runx2 Activity. The Journal of Cell Biology, 191, 1271-1283.
https://doi.org/10.1083/jcb.201009107
[15]  Fang, S., Deng, Y., Gu, P. and Fan, X. (2015) MicroRNAs Regulate Bone Development and Regeneration. International Journal of molecular Sciences, 16, 8227-8253.
https://doi.org/10.3390/ijms16048227
[16]  Pepin, G. and Gantier, M.P. (2016) MicroRNA Decay: Refining microRNA Regulatory Activity. MicroRNA, 5, 167-174.
https://doi.org/10.2174/2211536605666161027165915
[17]  Liu, X., Fortin, K. and Mourelatos, Z. (2008) MicroRNAs: Biogenesis and Molecular Functions. Brain Pathology, 18, 113-121.
https://doi.org/10.1111/j.1750-3639.2007.00121.x
[18]  Aguilera, O., Fernandez, A.F., Munoz, A. and Fraga, M.F. (2010) Epigenetics and Environment: A Complex Relationship. Journal of Applied Physiology, 109, 243-251.
https://doi.org/10.1152/japplphysiol.00068.2010
[19]  Li, H., Xie, H., Liu, W., et al. (2009) A Novel microRNA Targeting HDAC5 Regulates Osteoblast Differentiation in Mice and Contributes to Primary Osteoporosis in Humans. Journal of Clinical Investigation, 119, 3666-3677.
https://doi.org/10.1172/JCI39832
[20]  Delgado-Calle, J. and Riancho, J.A. (2012) The Role of DNA Methylation in Common Skeletal Disorders. Biology (Basel), 1, 698-713.
https://doi.org/10.3390/biology1030698
[21]  Harish, D. and Kaare, M. (2015) The Influence of DNA Methylation on Bone Cells. Journal of Clinical Investigation, 6, 384-392.
https://doi.org/10.2174/1389202916666150817202913
[22]  杨士珍, 黄永震, 贺花, 雷初朝, 陈宏. 动物DNA甲基化的研究现状与应用前景[J]. 中国牛业科学, 2016, 42(5): 51-54.
[23]  Zhang, X.H., Geng, G.L., Su, B., et al. (2016) MicroRNA-338-3p Inhibits Glucocorticoid-Induced Osteoclast Formation through RANKL Targeting. Genetics and Molecular Research, 15, gmr.15037674.
https://doi.org/10.4238/gmr.15037674
[24]  Nugent, M. (2017) MicroDNAs and Fracture Healing. Calcified Tissue International, 10, 355-361.
https://doi.org/10.1007/s00223-017-0296-x
[25]  Taipaleenmaki, H. (2018) Regulation of Bone Metabolism by microRNAs. Current Osteoporosis Reports, 16, 1-12.
https://doi.org/10.1007/s11914-018-0417-0
[26]  Valenti, M.T., Dalle, C.L. and Mottes, M. (2018) Role of mi-croRNAs in Progenitor Cell Commitment and Osteogenic Differentiation in Health and Disease. Molecular Medicine Reports, 1, 2441-2449.
https://doi.org/10.3892/ijmm.2018.3452
[27]  姚睿, 范志朋. 组蛋白去甲基化酶KDM4B促进根尖牙乳头干细胞中成骨和成牙本质分化[J]. 北京口腔医学, 2013, 21(4): 181-184.
[28]  Seeliger, C., Karpinski, K., Haug, A.T., et al. (2014) Five Freely Circulating miRNAs and Bone Tissue miRNAs Are Associated with Osteoporotic Fractures. Journal of Bone and Mineral Research, 29, 1718-1728.
https://doi.org/10.1002/jbmr.2175
[29]  Xaver, F., Christian, M. and Patrick, H. (2018) Bone-Related Circulating MicroRNAs miR-29b-3p, miR550a-3p, and miR-324-3p and Their Association to Bone Microstructure and Histomorphometry. Scientific Reports, 8, Article No. 4867.
https://doi.org/10.1038/s41598-018-22844-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133