|
表观遗传对成骨细胞的调控作用及与骨质疏松的关系
|
Abstract:
[1] | 董锁花, 王芳, 包金风. DNA甲基化对细胞周期的调控[J]. 中国细胞生物学学报, 2018, 40(12): 2083-2089. |
[2] | 张蓓蓓, 商玮, 蔡辉. 骨质疏松的表观遗传学调控[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 5(10): 33. |
[3] | Kyung, H. and Park, M. (2017) Epigenetic Regulation of Bone Cells. Connective Tissue Research, 58, 76-89.
https://doi.org/10.1080/03008207.2016.1177037 |
[4] | Tanner, C.G., Benjamin, J. and Wildman, A.J. (2018) Epi-genetic Remodeling and Modification to Preserve Skeletogenesis in Vivo. Connective Tissue Research, 59, 52-54. https://doi.org/10.1080/03008207.2017.1408599 |
[5] | Sharifi, Z., Daniela, G., Kenjiro, A., et al. (2017) DNA Methylation Regulates Discrimination of Enhancers from Promoters through a H3K4me1-H3K4me3 Seesaw Mechanism. BMC Genomics, 18, 964.
https://doi.org/10.1186/s12864-017-4353-7 |
[6] | 胡晓青, 张辛, 代岭辉, 朱敬先, 陈文庆, 傅欣, 敖英芳. 骨髓间充质干细胞成骨分化过程中Runx2的表观遗传学修饰[J]. 中国生物化学与分子生物学报, 2014, 30(2): 150-155. https://doi.org/10.1055/s-0034-1387330 |
[7] | Zhang, R.P., Shao, J.Z. and Xiang, L.X. (2011) GADD45A Protein Plays an Essential Role in Active DNA Demethylation during Terminal Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 286, 41083-41094. https://doi.org/10.1074/jbc.M111.258715 |
[8] | Jesus, D. and Carolina, S. (2011) DNA Methylation Contributes to the Regulation of Sclerostin Expression in Human Osteocytes. Journal of Bone and Mineral Research, 27, 926-937. https://doi.org/10.1002/jbmr.1491 |
[9] | Arnsdorf, E.J., Tummala, P., Castillo, A.B., et al. (2010) The Epigenetic Mechanism of Mechanically Induced Osteogenic Differentiation. Journal of Biomechanics, 43, 2881-2886. https://doi.org/10.1016/j.jbiomech.2010.07.033 |
[10] | Hupkes, M., Someren, E.P., Middelkamp, S.H., et al. (2011) DNA Methylation Restricts Spontaneous Multi-Lineage Differentiation. Biochimica et Biophysica Acta, 1813, 839-849. https://doi.org/10.1016/j.bbamcr.2011.01.022 |
[11] | Lee, J.Y., Lee, Y.M., Kim, M.J., Choi, J.Y., et al. (2006) Methylation of the Mouse DIx5 and Osx Gene Promoters Regulation Cell Type-Specific Gene Expression. Molecular Cell, 22, 182-188. |
[12] | 王维, 孟智启, 石放雄. 组蛋自修饰及其生物学效应[J]. 遗传, 2012, 34(7): 810-818.
https://doi.org/10.3724/SP.J.1005.2012.00810 |
[13] | Sun, J.Y. and Kyunghwan, K. (2018) Histone Tail Cleavage as a Novel Epigenetic Regulatory Mechanism for Gene Expression. BMB Reports, 5, 211-218. https://doi.org/10.5483/BMBRep.2018.51.5.053 |
[14] | Hesse, E., Saito, H., Kiviranta, R., et al. (2010) Zfp521 Controls Bone Mass by HDAC3-Dependent Attenuation of Runx2 Activity. The Journal of Cell Biology, 191, 1271-1283. https://doi.org/10.1083/jcb.201009107 |
[15] | Fang, S., Deng, Y., Gu, P. and Fan, X. (2015) MicroRNAs Regulate Bone Development and Regeneration. International Journal of molecular Sciences, 16, 8227-8253. https://doi.org/10.3390/ijms16048227 |
[16] | Pepin, G. and Gantier, M.P. (2016) MicroRNA Decay: Refining microRNA Regulatory Activity. MicroRNA, 5, 167-174. https://doi.org/10.2174/2211536605666161027165915 |
[17] | Liu, X., Fortin, K. and Mourelatos, Z. (2008) MicroRNAs: Biogenesis and Molecular Functions. Brain Pathology, 18, 113-121. https://doi.org/10.1111/j.1750-3639.2007.00121.x |
[18] | Aguilera, O., Fernandez, A.F., Munoz, A. and Fraga, M.F. (2010) Epigenetics and Environment: A Complex Relationship. Journal of Applied Physiology, 109, 243-251. https://doi.org/10.1152/japplphysiol.00068.2010 |
[19] | Li, H., Xie, H., Liu, W., et al. (2009) A Novel microRNA Targeting HDAC5 Regulates Osteoblast Differentiation in Mice and Contributes to Primary Osteoporosis in Humans. Journal of Clinical Investigation, 119, 3666-3677.
https://doi.org/10.1172/JCI39832 |
[20] | Delgado-Calle, J. and Riancho, J.A. (2012) The Role of DNA Methylation in Common Skeletal Disorders. Biology (Basel), 1, 698-713. https://doi.org/10.3390/biology1030698 |
[21] | Harish, D. and Kaare, M. (2015) The Influence of DNA Methylation on Bone Cells. Journal of Clinical Investigation, 6, 384-392. https://doi.org/10.2174/1389202916666150817202913 |
[22] | 杨士珍, 黄永震, 贺花, 雷初朝, 陈宏. 动物DNA甲基化的研究现状与应用前景[J]. 中国牛业科学, 2016, 42(5): 51-54. |
[23] | Zhang, X.H., Geng, G.L., Su, B., et al. (2016) MicroRNA-338-3p Inhibits Glucocorticoid-Induced Osteoclast Formation through RANKL Targeting. Genetics and Molecular Research, 15, gmr.15037674.
https://doi.org/10.4238/gmr.15037674 |
[24] | Nugent, M. (2017) MicroDNAs and Fracture Healing. Calcified Tissue International, 10, 355-361.
https://doi.org/10.1007/s00223-017-0296-x |
[25] | Taipaleenmaki, H. (2018) Regulation of Bone Metabolism by microRNAs. Current Osteoporosis Reports, 16, 1-12.
https://doi.org/10.1007/s11914-018-0417-0 |
[26] | Valenti, M.T., Dalle, C.L. and Mottes, M. (2018) Role of mi-croRNAs in Progenitor Cell Commitment and Osteogenic Differentiation in Health and Disease. Molecular Medicine Reports, 1, 2441-2449.
https://doi.org/10.3892/ijmm.2018.3452 |
[27] | 姚睿, 范志朋. 组蛋白去甲基化酶KDM4B促进根尖牙乳头干细胞中成骨和成牙本质分化[J]. 北京口腔医学, 2013, 21(4): 181-184. |
[28] | Seeliger, C., Karpinski, K., Haug, A.T., et al. (2014) Five Freely Circulating miRNAs and Bone Tissue miRNAs Are Associated with Osteoporotic Fractures. Journal of Bone and Mineral Research, 29, 1718-1728.
https://doi.org/10.1002/jbmr.2175 |
[29] | Xaver, F., Christian, M. and Patrick, H. (2018) Bone-Related Circulating MicroRNAs miR-29b-3p, miR550a-3p, and miR-324-3p and Their Association to Bone Microstructure and Histomorphometry. Scientific Reports, 8, Article No. 4867. https://doi.org/10.1038/s41598-018-22844-2 |