在互联网金融和数据挖掘技术的发展下,运用机器学习算法在传统金融领域和P2P平台领域,对降低借款人的违约风险,保证金融行业与P2P平台良好运营具有重要意义。本文利用澳大利亚P2P平台Ratesetter官网上的贷款数据,通过CatBoost算法与传统机器学习算法作比较分析,以AUC值和准确率作为评价标准,实证研究显示CatBoost算法在对信用评分中优于传统机器学习算法,能够达到更好的准确性。
Under the development of Internet finance and data mining technology, the use of machine learning algorithms in the traditional financial field and P2P platform field is of great significance to reduce the default risk of borrowers and ensure the good operation of financial industry and P2P platform. This paper uses the loan data of Australia P2P platform, compares with CatBoost algorithm and traditional machine learning algorithm, and uses AUC value and accuracy as evaluation standard. Empirical research shows that CatBoost algorithm is superior to traditional machine learning algorithm in credit scoring and can achieve better accuracy.
Dorogush, A.V., Ershov, V. and Gulin, A. (2018) CatBoost: Gradient Boosting with Categorical Features Support.
arXiv:1810.11363
[8]
Nguyen, V.K., Zhang, W.E. and Sheng, Q.Z. (2018) Identifying Price Index Classes for Electricity Consumers via Dynamic Gradient Boosting. In: Hacid, H., Cellary, W., Wang, H., Paik, H.Y. and Zhou, R., Eds., Web Information Systems Engineering WISE 2018, WISE 2018. Lecture Notes in Computer Science, Vol. 11234. Springer, Cham, 472-486. https://doi.org/10.1007/978-3-030-02925-8_33