全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

证明D-Finite类数学猜想的新方法
A New Method to Prove Mathematical Conjecture of D-Finite Class

DOI: 10.12677/PM.2019.93046, PP. 344-350

Keywords: Morley三角形,高斯曲率,D-有限,共形映射
Morley’s Triangles
, Gaussian Curvature, D-Finite, Conformal Mappings

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出并证明了基于Morley三分线定理的Morley三角形微分定理(Gauss曲率指针细数定理)。根据该定理三点共线的结论构建了直角三角形及其镜像与M?bius函数对应的关联模型,为进一步研究M?bius函数的插值算法和离散性质奠定了基础;该定理还揭示了泛函的本质是泛函“一维”,并为进一步将泛函一维的几何性质推广到泛函“平面”指出了研究方向;论文中的定理、推论和开放性问题揭示了一次多项式向量场的极限环性质和二次多项式向量场的研究途径。给出了证明非交换D-finite类猜想的新方法。
This paper presents and proves the Morley differential theorem (Gauss curvature pointer fineness theorem) based on Morley’s theorem. According to the conclusion of the three-point collinearity of this theorem, a correlation model between the right triangle and its mirror image and the M?bius function is constructed, which lays a foundation for the further study of the interpolation algorithm and discrete properties of the M?bius function. This theorem reveals that the nature of functional is functional “one-dimensional”, which lays a foundation for further extending the geometric properties of functional one-dimensional to functional “plane”. The theorems, corollaries and open problems in this paper reveal the properties of limit cycles of vector fields of first order polynomials and the research approaches of vector fields of quadratic polynomials. The new method to prove non-commutative D-finite class conjectures is given.

References

[1]  Morley, F. (1903) Orthocentric Properties of the Plane n-Line. Transactions of the American Mathematical Society, 4, 1-12.
https://doi.org/10.2307/1986445
[2]  Braude, E.J. (2016) Generalizing the Morley Trisector and Various Theorems with Realizability Computations. arXiv:1603.03463 [cs.CG]
[3]  Karamzadeh, O.A.S. (2014) Is John Conway’s Proof of Morley’s Theorem the Sim-plest and Free of a Deus ex Machina? The Mathematical Intelligencer, 36, 4-7.
https://doi.org/10.1007/s00283-014-9481-1
[4]  Letac, A. (1939) Solution (Morley’s Triangle), Problem No. 490. Sphinx, 9, 46.
[5]  Dobbs, W.J. (1938) Morley’s Triangle. Mathematical Gazette, 22, 50-57, and 189 for comment.
https://doi.org/10.2307/3607446
[6]  Bremner, A., Goggins, J.R., Guy, M.J.T. and Guy, R.K. (2000) On Rational Morley Triangles. Acta Arithmetica, 2, 177-187.
https://doi.org/10.4064/aa-93-2-177-187
[7]  Stanley, R P. (2015) Catalan Number. Cambridge University Press, Cambridge.
[8]  Dulac, H. (1923) Sur les Cycles Limites. Bulletin de la Société Mathématique de France, 51, 45-188.
https://doi.org/10.24033/bsmf.1031
[9]  Chicone, C. and Shafer, D.S. (1983) Separatrix and Limit Cycles of Quadratic Systems and Dulac’s Theorem. Transactions of the American Mathematical Society, 278, 585-612.
https://doi.org/10.1090/s0002-9947-1983-0701513-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133