全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义度量空间问题成立的可能性
The Possibility of the Problem on Generalized Metric Space

DOI: 10.12677/PM.2019.93045, PP. 336-343

Keywords: 度量空间,层空间,正则空间,开集,闭包
Metric Space
, Stratifiable Space, Regular Space, Open Set, Closure

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文尝试证明广义度量空间问题中层空间等价的问题。通过研究可度量空间中有关有限基和正则性的定义和性质,得到了具有 局部有限基的正则空间,再通过Nagata-Smirnov度量化定理将 局部有限基弱化为闭包保持基就得到了关于构造层空间的方法,这里利用构造拓扑空间和建立连续映射的方法,证明了所构造空间M1与M3等价,从而解决了广义度量空间中所构造的三种层空间相互等价的问题。
This paper tries to prove the equivalence of stratifiable spaces in the problem on generalized metric space. The definitions and properties of finite basis and regularity in metric space are studied. The regular space with? ?local finite basis is obtained. In addition, the method of building space is obtained by using the Nagata-Smirnov Metrization Theorem to weaken the? ?local finite basis to the closure keep basis. A method of constructing a topological space and establishing a continuous mapping is used here. The space M1 is equal to the space M3. In this way, three kinds of spatial equivalent problems in generalized metric space are solved.

References

[1]  “10000个科学难题”数学编委会. 10000个科学难题?数学卷[M]. 北京: 科学出版社, 2009: 211-212.
[2]  James R. Munkres. 拓扑学[M]. 北京: 机械工业出版社, 2006.
[3]  儿玉之宏, 永见启应. 拓扑空间论[M]. 北京: 科学出版社, 1984.
[4]  高国士. 拓扑空间论[M]. 北京: 科学出版社, 2000.
[5]  Anderson, R.D., et al. (2002) Recent Progress in General Topology. North-Holland, Amsterdam, 545-575.
[6]  Gartside, P.M. and Reznichenko, E.A. (2000) Near Metric Properties of Function Spaces. Fundamenta Mathematicae, 164, 97-114.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133