全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有脉冲的无限时滞系统的持久性与全局吸引性
Permanence and Global Attractivity of an Impulsive In?nite Delay System

DOI: 10.12677/PM.2019.93050, PP. 377-385

Keywords: 脉冲,时滞,持久,全局吸引性
Impulsive
, Delay, Permanence, Global Attractivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文研究了具有脉冲的无限时滞系统的持久性与全局吸引性。利用脉冲微积分方程不等式以及放缩技巧得到所构造的系统是持续生存的。构造合适的Lyapunov函数和一些分析技巧证明其全局吸引性,我们的结果推广和改进了相关文献的结果。
In this paper, we study a system with impulsive and in?nite delay. By using the comparison theorem of impulsive di?erential equations and constructing some suitable Lyapunov functionals, we discuss the permanence and global attractivity of the model.

References

[1]  Kuang, Y. (1993) Delay Di erential Equations: With Applications in Population Dynamics. Academic Press, Boston.
[2]  Chen, F.D. and Shi, C.L. (2006) Dynamic Behavior of a Logistic Equation with In nite Delay. Acta Mathematicae Applicatae Sinica, 22, 313-324.
https://doi.org/10.1007/s10255-006-0307-6
[3]  Teng, Z.D. (2002) Permanence and Stability in Non-Autonomous Logistic Systems with In nite Delays. Dynamical Systems, 17, 187-202.
https://doi.org/10.1080/14689360110102312
[4]  He, M.X., Chen, F.D. and Li, Z. (2016) Permanence and Global Attractivity of an Impulsive Delay Logistic Model. Applied Mathematics Letters, 62, 92-100.
https://doi.org/10.1016/j.aml.2016.07.009
[5]  Lakshmikantham, V., Bainov, D.D. and Simeonov, P.S. (1989) Theory of Impulsive Di erential Equations. World Scienti c, Singapore.
https://doi.org/10.1142/0906
[6]  de Oca, F.M. and Vivas, M. (2006) Extinction in a Two Dimensional Lotka-Volterra System with In nite Delay. Nonlinear Analysis: Real World Applications, 7, 1042-1047.
https://doi.org/10.1016/j.nonrwa.2005.09.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133