|
H3XF (X = Ge, Si)与芳香环化合物间硅键作用的理论研究
|
Abstract:
通过量子化学计算方法MP2对H3XF (X = Ge, Si)和五种芳香环化合物(苯、吡啶、吡咯、呋喃、噻吩)形成的硅键复合物进行了研究。复合物的结合模式可分为两类,模式I复合物中X主要与芳香环碳原子发生硅键相互作用,模式II则主要与芳香环杂原子发生硅键相互作用。H3XF与所有芳香环化合物都能形成模式I复合物,稳定性顺序为:吡咯 > 噻吩 > 苯 > 呋喃 > 吡啶。H3XF则只能与三种芳香环化合物形成模式II复合物,稳定性顺序为:吡啶 > 噻吩 > 呋喃。分析表明模式I复合物均为π型硅键,而模式II复合物则各不同:吡啶模式II复合物为n型硅键,呋喃模式II复合物为n/π型硅键,噻吩模式II复合物为π型硅键。
The tetrel-bonding complexes formed between H3XF (X = Ge, Si) and the selected aromatic ring compounds (benzene, pyridine, pyrrole, furan and thiophene) have been investigated by MP2 quantum chemical method. There exist two binding modes for these complexes. The X atoms mainly interact with the carbon atoms of aromatic ring compounds for mode I complexes, while the X atoms mainly interact with the hetero atoms for binding mode II complexes. All the aromatic ring compounds can form mode I complexes with H3XF, and the order of stability is pyrrole > thiophene > benzene > furan > pyridine. Only three aromatic ring compounds can form mode II complexes with H3XF, and the order of stability is pyridine > thiophene > furan. All the five mode I complexes are π-type tetrel-bonding complexes, but the mode II complexes are different from each other: the mode II complex of pyridine is n-type complex; the mode II complex of furan is n/π-type complex; and the mode II complex of thiophene is π-type complex.
[1] | Politzer, P., Murray, J.S. and Clark, T. (2013) Halogen Bonding and Other σ-Hole Interactions: A Perspective. Physical Chemistry Chemical Physics, 15, 11178-11189. https://doi.org/10.1039/c3cp00054k |
[2] | Frontera, A., Qui?onero, D. and Deyà, P.M. (2011) Cation-π and Anion-π Interactions. Molecular Sciences, 1, 440-459. https://doi.org/10.1002/wcms.14 |
[3] | Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. and Terraneo, G. (2008) Halogen Bonding in Supramolecular Chemistry. Angewandte Chemie In-ternational Edition, 47, 6114-6127. https://doi.org/10.1002/anie.200800128 |
[4] | Hernandes, M.Z., Cavalcanti, S.M.T., Moreira, D.R.M., de Azevedo Jr., W.F. and Leite, A.C.L. (2010) Halogen Atoms in the Modern Medicinal Chemistry: Hints for the Drug De-sign. Current Drug Targets, 11, 303-314. https://doi.org/10.2174/138945010790711996 |
[5] | Wang, W., Ji, B. and Zhang, Y. (2009) Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. The Journal of Physical Chemistry A, 113, 8132-8135. https://doi.org/10.1021/jp904128b |
[6] | Zahn, S., Frank, R., Hey-Hawkins, E. and Kirchner, B. (2011) Barbara Kirchner. Chemistry—A European Journal, 17, 6034-6038. https://doi.org/10.1002/chem.201002146 |
[7] | Li, Q.Z., Li, R., Liu, X.F., Li, W.Z. and Cheng, J.B. (2012) Concerted Interaction between Pnicogen and Halogen Bonds in XCl-FH2P-NH3 (X = F, OH, CN, NC, and FCC). ChemPhysChem, 13, 1205-1212. https://doi.org/10.1002/cphc.201100860 |
[8] | Li, Q.Z., Li, R., Liu, X.F., Li, W.Z. and Cheng, J.B.J. (2012) Pnicogen-Hydride Interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li, and Na). The Journal of Physical Chemistry A, 116, 2547-2553. https://doi.org/10.1021/jp211435b |
[9] | 刘玉震, 黎安勇. H2XP???SHY复合物中磷键与硫键的理论研究[J]. 物理化学学报, 2015, 31(3): 435-440. |
[10] | Bauza, A., Mooibroek, T.J. and Frontera, A. (2013) Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angewandte Chemie International Edition, 52, 12317-12321. https://doi.org/10.1002/anie.201306501 |
[11] | Dong, W.B., Niu, B.B., Liu, S.F., Cheng, J.B., Liu, S.L. and Li, Q.Z. (2019) Comparison of σ-/π-Hole Tetrel Bonds between TH3F/F2TO and H2CX (X = O, S, Se). ChemPhysChem, 20, 627-635. |
[12] | Wei, Y.X., Li, Q.Z. and Steve, S. (2018) The π-Tetrel Bond and Its Influence on Hydrogen Bonding and Proton Transfer. ChemPhysChem, 19, 736-743. https://doi.org/10.1002/cphc.201701136 |
[13] | Mo, L.X., Zeng, Y.L., Li, X.Y. and Meng, L.P. (2017) The Enhancing Effects of Molecule X (X ?=? PH2Cl, SHCl, ClCl) on Chalcogen-Chalcogen Interactions in Cyclic Trimers Y???Y???X (Y? =? SHCl, SeHCl). International Journal of Quantum Chemistry, 117, e25354. https://doi.org/10.1002/qua.25354 |
[14] | Mehdi, D., Esrafili, S.A. and Parisasadat, M. (2018) Anionic Tetrel Bonds: An Ab Initio Study. Chemical Physics Letters, 691, 394-400. https://doi.org/10.1016/j.cplett.2017.11.051 |
[15] | Xu, H.L., Cheng, J.B., Yang, X., Liu, Z.B., Li, W.Z. and Li, Q.Z. (2017) Comparison of σ-Hole and π-Hole Tetrel Bonds Formed by Pyrazine and 1,4-Dicyanobenzene: The Interplay between Anion-π and Tetrel Bonds. ChemPhysChem, 18, 2442-2450. https://doi.org/10.1002/cphc.201700660 |
[16] | Wu, J.Y. (2014) Investigations into the Nature of Halogen- and Hydrogen-Bonding Interactions of Some Heteroaromatic Rings with Dichlorine Monoxide. Journal of Molecular Modeling, 20, 2424.
https://doi.org/10.1007/s00894-014-2424-0 |
[17] | 许惠英, 王维, 邹建卫. PH2X与五元杂环体系磷键相互作用的理论研究[J]. 化学学报, 2013, 71(8): 1175-1182. |
[18] | Boys, S.F. (1970) The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Molecular Physics, 19, 553-566. https://doi.org/10.1080/00268977000101561 |
[19] | Reed, A.E., Weinhold, F., Curtiss, L.A. and Pochatko, D.J. (1988) Intermo-lecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews, 88, 899-926. https://doi.org/10.1021/cr00088a005 |
[20] | Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2009) Gaussian 09. Revision C.01. Gaussian Inc., Wallingford. |
[21] | Dennington, R., Keith, T. and Millam, J.S. (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission. |
[22] | Grabowski, S.J. (2001) Ab Initio Calculations on Conventional and Unconventional Hydrogen Bonds Study of the Hydrogen Bond Strength. The Journal of Physical Chemistry A, 105, 10739-10746. https://doi.org/10.1021/jp011819h |
[23] | Scheiner, S., Grabowski, S.J. and Kar, T.J. (2001) Influence of Hybridization and Sub-stitution on the Properties of the CH???O Hydrogen Bond. The Journal of Physical Chemistry A, 105, 10607-10612. https://doi.org/10.1021/jp0131267 |
[24] | Johnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J. and Yang, W.T. (2010) Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132, 6498-6506. https://doi.org/10.1021/ja100936w |
[25] | Lu, T. and Chen, F.W. (2012) A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry, 33, 580-592. https://doi.org/10.1002/jcc.22885 |
[26] | Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD—Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5 |