全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于极大熵原理的改进型地累积指数研究
Improvement of Geo-Accumulation Index Based on Maximum Entropy Principle

DOI: 10.12677/JWRR.2019.83026, PP. 217-223

Keywords: 地累积指数,湖泊沉积物,重金属污染,极大熵原理
Geo-Accumulation Index
, Lake Sediments, Heavy Metal Pollution, Maximum Entropy Principle

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于采样误差、测量误差以及沉积物时空分布的不均匀性等因素的影响,在实际的环境调查中,沉积物的重金属浓度往往具有一定的不确定性,而传统的地累积指数难以处理这类问题。为解决这一问题,本研究首先基于极大熵原理,建立了改进的地累积指数模型。而后以洞庭湖的沉积物重金属污染评价为例,对两种模型的评价效果进行了比较。结果显示改进的地累积指数模型能够更好地处理实测值以区间形式表示的重金属污染评价问题,而且相对于传统的地累积指数模型,改进的地累积指数模型在等级识别和污染程度排序方面均更有优势。最后,本研究通过数学证明,揭示了两种模型的联系与区别:改进的地累积指数是传统地累积指数向不确定性分析的拓展和深化,而传统地累积指数本质上是改进的地累积指数在不确定区间宽度趋于0时的特例。
For the sampling error, the measuring error, the inhomogeneity of minerals, and the other uncertain factors, in the practical environmental investigation, the concentrations of heavy metals in the sediments are often represented informs of intervals instead of accurate values. However, the conventional geo-accumulation index (CGI) cannot deal with these uncertainties in heavy metal pollution evaluation. To solve this problem, an improved geo-accumulation index (IGI) model is established based on the maximum entropy principle. The heavy metal pollution in the sediment in the Dongting Lake is evaluated as an illustration to compare the effects of these two models. The result shows that IGI has a better capacity in dealing with the heavy metals, the concentrations of which are represented informs of intervals, and an obvious advantage in the hierarchical recognition and the pollution degree schedule. At last, the mathematical relationship between these two models is revealed. IGI is the generalization of CGI into uncertainty analysis, while CGI can be regarded as a special case when the width of the uncertainty interval in IGI approximates to zero.

References

[1]  田海涛, 张振克, 丁海燕, 等. 40年来江苏石梁河水库重金属污染的沉积记录[J]. 湖泊科学, 2008, 20(5): 600-604. TIAN Haitao, ZHANG Zhenke, DING Haiyan, et al. Recent 40-year sedimentary record of heavy metal pollution in the Shilianghe Reservoir, Jiangsu Province. Journal of Lake Science, 2008, 20(5): 600-604. (in Chinese)
[2]  魏荣菲, 庄舜尧, 杨浩, 等. 苏州河网区河道沉积物重金属的污染特征[J]. 湖泊科学, 2010, 22(4): 527-537. WEI Rongfei, ZHUANG Shunyao, YANG Hao, et al. Pollution characteristics of heavy metals in sediments from the river network of Suzhou City. Journal of Lake Science, 2010, 22(4): 527-537. (in Chinese)
[3]  MEN, C., LIU, R., XU, F., et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 2018, 612: 138-147.
https://doi.org/10.1016/j.scitotenv.2017.08.123
[4]  祝慧娜, 李莹, 梁婕, 等. 基于区间数排序法的洞庭湖沉积物重金属生态风险分析[J]. 环境工程, 2014, 32(2): 114-117. ZHU Huina, LI Ying, LIANG Jie, et al. Ecological risk assessment of heavy metals in sediment of Dongting Lake based on ranking-method of interval numbers. Environmental Engineering, 2014, 32(2): 114-117. (in Chinese)
[5]  王晓飞, 邓超冰, 尹娟, 等. 基于区间数排序法的农田土壤重金属生态风险分析[J]. 中国环境监测, 2017, 33(3): 106-113. WANG Xiaofei, DENG Chaobing, YIN Juan, et al. Ecological risk assessment of heavy metals in the contaminated farmland based on ranking-method of interval numbers. Environmental Monitoring in China, 2017, 33(3): 106-113. (in Chi-nese)
[6]  PAPALEXIOU, S. M., KOUTSOYIANNIS, D. Entropy based derivation of probability distributions: A case study to daily rainfall. Advances in Water Resources, 2012, 45(45): 51-57.
https://doi.org/10.1016/j.advwatres.2011.11.007
[7]  邱菀华. 管理决策与应用熵学[M]. 北京: 机械工业出版社, 2002. QIU Kouhua. Management decision and applied entropy. Beijing: Machinery Industry Press, 2002. (in Chinese)
[8]  代恩华. 洛必达法则及斯铎兹定理的一种简便证法[J]. 高等数学研究, 2010, 13(5): 51-54. DAI Enhua. Easy approach to L Hospitals rule and O. Stolz theorem. Studies in College Mathematics, 2010, 13(5): 51-54. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133