全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

横向磁畴壁在梯形截面纳米带中的快速运动
Fast Motion of Transverse Magnetic Domain Walls in Trapezoidal Cross-Section Nanostrips

DOI: 10.12677/CMP.2019.82007, PP. 52-59

Keywords: 磁畴壁,自旋动力学,梯形截面
Magnetic Domain Wall
, Spin Dynamics, Trapezoidal Cross Section

Full-Text   Cite this paper   Add to My Lib

Abstract:

以往大多是以矩形截面的纳米带为载体探讨横向磁畴壁的动力学。矩形截面纳米带具有均匀的厚度,而梯形截面纳米带的中间区域厚度大于两侧。我们研究了外磁场驱动下梯形截面纳米带中的横向磁畴壁运动,并详细探讨了梯形截面纳米带中的横向磁畴壁的形貌变化。微磁模拟计算表明梯形截面的设计使得磁畴壁运动速度比在矩形截面纳米带中更快。我们发现,磁畴壁速度与梯形截面纳米带底角具有密切关系,结果表明,磁畴壁在小底角的纳米带中具有高的运动速度。我们还发现磁畴壁的速度与磁畴壁平均宽度并不成线性关系,而是与磁畴壁上下端宽度具有正比关系。除此之外,我们通过磁畴壁区域的磁矩在有效场下的旋进速度分布深入探讨了退磁场对磁畴壁高速运动的贡献。梯形截面纳米带中磁畴壁运动的研究为磁畴壁动力学中提出了新的思路。
In the past, most of the researches discuss on the dynamics of transverse magnetic domain walls were based on nanostrips with rectangular cross-section. Unlike the uniform thickness of rectan-gular cross-section nanostrips, the thickness is larger in the middle than at the sides for trapezoidal nanostrips. Transverse domain wall motion in trapezoidal nanostrips driven by external magnetic field is studied and the morphology variation of the transverse magnetic domain walls is discussed in detail. The micromagnetic simulation results show that the velocity of magnetic domain wall motion is faster than that of rectangular nanostrips due to the design of trapezoidal cross-section. It is found that the magnetic domain wall velocity is closely related to the base angle of the trapezoidal cross-section. As a result, the magnetic domain wall has a high velocity in the nanostrips with small base angle. We find that the velocity of magnetic domain wall is not linearly related to the average width of magnetic domain wall, but is proportional to the width of the upper and lower ends of the magnetic domain wall. In addition, the contribution of demagnetization to the fast motion of the domain wall is discussed through the precession speed distribution of the magnetization in the domain wall region under the effective field. The study of the magnetic domain wall motion in trapezoidal cross-section nanostrips provides a new idea for the magnetic domain wall dynamics.

References

[1]  Parkin, S.S.P., Hayashi, M. and Thomas, L. (2008) Magnetic Domain-Wall Racetrack Memory. Science, 320, 190-194.
https://doi.org/10.1126/science.1145799
[2]  Franken, J.H., Swagten, H.J.M. and Koopmans, B. (2012) Shift Registers Based on Magnetic Domain Wall Ratchets with Perpendicular Anisotropy. Nature Nanotechnology, 7, 499-503.
https://doi.org/10.1038/nnano.2012.111
[3]  Allwood, D.A., Xiong, G., Cooke, M.D, Faulkner, C.C., Atkinson, D., Vernier, N. and Cowburn, R.P. (2002) Submicrometer Ferromagnetic NOT Gate and Shift Register. Science, 296, 2003-2006.
https://doi.org/10.1126/science.1070595
[4]  Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D. and Cowburn, R.P. (2005) Magnetic Domain-Wall Logic. Science, 309, 1688-1692.
https://doi.org/10.1126/science.1108813
[5]  Omari, K.A. and Hayward, T.J. (2014) Chirality-Based Vortex Domain-Wall Logic Gates. Physical Review Applied, 2, Article ID: 044001.
https://doi.org/10.1103/PhysRevApplied.2.044001
[6]  Ono, T. (1999) Propagation of a Magnetic Domain Wall in a Submi-crometer Magnetic Wire. Science, 284, 468-470.
https://doi.org/10.1126/science.284.5413.468
[7]  Slonczewski, J.C. (1996) Current Driven Excitation of Magnetic Multilayers. Journal of Magnetism and Magnetic Materials, 159, L1-L7.
https://doi.org/10.1016/0304-8853(96)00062-5
[8]  Yamaguchi, A., Ono, T., Nasu, S., Miyake, K., Mibu, K. and Shinjo, T. (2004) Real-Space Observation of Current-Driven Domain Wall Motion in Submicron Magnetic Wires. Physical Review Letters, 92, Article ID: 077205.
https://doi.org/10.1103/PhysRevLett.92.077205
[9]  Thiele, A.A. (1973) Steady-State Motion of Magnetic Domains. Physical Review Letters, 30, 230-233.
https://doi.org/10.1103/PhysRevLett.30.230
[10]  王友君, 王瑞方. 交变共振磁场下横向磁畴壁的快速输运[J]. 凝聚态物理学进展, 2018, 7(2): 67-75.
[11]  Nakatani, Y., Thiaville, A. and Miltat, J. (2003) Faster Magnetic Walls in Rough Wires. Nature Materials, 2, 521-523.
https://doi.org/10.1038/nmat931
[12]  Lewis, E.R., Petit, D., O’Brien, L., Fernandez-Pacheco, A., Sampaio, J., Jausovec, A.-V., Zeng, H.T., Read, D.E. and Cowburn R.P. (2010) Fast Domain Wall Motion in Magnetic Comb Structures. Nature Materials, 9, 980-983.
https://doi.org/10.1038/nmat2857
[13]  Yan, M., Andreas, C., Kakay, A., Garcia-Sanchez, F. and Hertel, R. (2011) Fast Domain Wall Dynamics in Magnetic Nanotubes: Suppression of Walker Breakdown and Cherenkov-Like Spin Wave Emission. Applied Physics Letters, 99, Article ID: 122505.
https://doi.org/10.1063/1.3643037
[14]  Yan, M., Kákay, A., Gliga, S. and Hertel, R. (2010) Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires. Physical Review Letters, 104, Article ID: 057201.
https://doi.org/10.1103/PhysRevLett.104.057201
[15]  姜寿亭, 李卫. 凝聚态磁性物理[M]. 北京: 科学出版社, 2003.
[16]  McMichael, R.D. and Donahue, M.J. (1997) Head to Head Domain Wall Structures in Thin Magnetic Strips. IEEE Transactions on Magnetics, 33, 4167-4169.
https://doi.org/10.1109/20.619698
[17]  Zhang, J., Ho, P., Currivan-Incorvia, J.A., Afroz, S.A. and Ross, C.A. (2015) Edge-Modulated Perpendicular Magnetic Anisotropy in [Co/Pd]n and L10-FePt Thin Film Wires. Applied Physics Letters, 107, Article ID: 182408.
https://doi.org/10.1063/1.4935104
[18]  Donahue, M.J. and Porter, D.G. (1999) OOMMF User’s Guide. National Institute of Standards and Technology, Gaithersburg.
https://doi.org/10.6028/NIST.IR.6376
[19]  O’Handley, R.C. (2000) Modern Magnetic Materials: Principles and Applications. Wiley, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133