全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于XGBoost的电商优惠券使用情况预测研究
Research on Prediction of the Use of Electronic Coupons Based on XGBoost

DOI: 10.12677/CSA.2019.95116, PP. 1029-1035

Keywords: XGBoost, GBDT, RF
XGBoost
, GBDT, RF

Full-Text   Cite this paper   Add to My Lib

Abstract:

Boosting是十分有效的序列集成算法,在实践中有着广泛的应用。本文着重研究的XGBoost算法针对快速并行树结构进行了优化,并且在分布环境下容错,这使得它可以精确快速处理亿级数据、给出可靠的结果。本文分别通过模拟分析和实证分析,对比GBDT和RF算法验证了XGBoost的优良特性。
Boosting is a very effective sequence integration algorithm, which has a wide range of applications in practice. This paper focuses on the XGBoost algorithm, which optimizes the structure of fast parallel tree and is fault-tolerant in distributed environment. This makes it possible to process billions of data accurately and quickly and give reliable results. In this paper, through simulation analysis and empirical analysis, compared with GBDT and RF algorithm, XGBoost’s excellent characteristics are verified.

References

[1]  Schapire, R.E. (1990) The Strength of Weak Learnability. Machine Learning, 5, 197-227.
https://doi.org/10.1007/BF00116037
[2]  Freund, Y. and Schapire, R.E. (1997) A Decision-Theoretic Generali-zation of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55, 119-139.
https://doi.org/10.1006/jcss.1997.1504
[3]  Friedman, J. (2001) Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29, 1189-1232.
https://doi.org/10.1214/aos/1013203451
[4]  Friedman, J., Hastie, T. and Tibshirani, R. (2001) The Elements of Statistical Learning. Springer Series in Statistics, New York.
https://doi.org/10.1007/978-0-387-21606-5
[5]  Chen, T. and Guestrin, C. (2016) Xgboost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 785-794.
https://doi.org/10.1145/2939672.2939785
[6]  Freund, Y. and Schapire, R.E. (1996) Experiments with a New Boosting Algorithm. ICML, 96, 148-156.
[7]  Friedman, J., Hastie, T. and Tibshirani, R. (2000) Additive Logistic Regression: A Statistical View of Boosting (with Discussion and a Rejoinder by the Authors). The Annals of Statistics, 28, 337-407.
https://doi.org/10.1214/aos/1016218223
[8]  Zhang, T. and Johnson, R. (2014) Learning Nonlinear Functions Using Regularized Greedy Forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36.
https://doi.org/10.1109/TPAMI.2013.159
[9]  Friedman, J. (2002) Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38, 367-378.
https://doi.org/10.1016/S0167-9473(01)00065-2
[10]  Breiman, L. (2001) Random Forests. Maching Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133