|
基于XGBoost的电商优惠券使用情况预测研究
|
Abstract:
[1] | Schapire, R.E. (1990) The Strength of Weak Learnability. Machine Learning, 5, 197-227.
https://doi.org/10.1007/BF00116037 |
[2] | Freund, Y. and Schapire, R.E. (1997) A Decision-Theoretic Generali-zation of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55, 119-139. https://doi.org/10.1006/jcss.1997.1504 |
[3] | Friedman, J. (2001) Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29, 1189-1232.
https://doi.org/10.1214/aos/1013203451 |
[4] | Friedman, J., Hastie, T. and Tibshirani, R. (2001) The Elements of Statistical Learning. Springer Series in Statistics, New York. https://doi.org/10.1007/978-0-387-21606-5 |
[5] | Chen, T. and Guestrin, C. (2016) Xgboost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 785-794.
https://doi.org/10.1145/2939672.2939785 |
[6] | Freund, Y. and Schapire, R.E. (1996) Experiments with a New Boosting Algorithm. ICML, 96, 148-156. |
[7] | Friedman, J., Hastie, T. and Tibshirani, R. (2000) Additive Logistic Regression: A Statistical View of Boosting (with Discussion and a Rejoinder by the Authors). The Annals of Statistics, 28, 337-407.
https://doi.org/10.1214/aos/1016218223 |
[8] | Zhang, T. and Johnson, R. (2014) Learning Nonlinear Functions Using Regularized Greedy Forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36. https://doi.org/10.1109/TPAMI.2013.159 |
[9] | Friedman, J. (2002) Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38, 367-378.
https://doi.org/10.1016/S0167-9473(01)00065-2 |
[10] | Breiman, L. (2001) Random Forests. Maching Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 |