全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数字全息显微技术的生物细胞动态定量测量
Dynamic Quantitative Measurement of Cells Based on Digital Holographic Microscopy

DOI: 10.12677/OE.2019.92012, PP. 77-82

Keywords: 数字全息显微,光程长,动态测量
Digital Holographic Microscopy
, Optical Path Length, Dynamic Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

对生物细胞的动态测量已长期停留在定性观察的基础上。细胞作为透明样本,其透射光程长具有与细胞形态、细胞质浓度线性相关的特点,因此可定量反映细胞的生命状态。数字全息显微技术能够快速获得样本的定量动态光程长信息,并且不会对样本造成损害。本文利用透射式数字全息显微系统对海拉细胞和大肠杆菌进行动态观察,获取透射光程长,分析光程长信息与生命过程的映射关系,为探索环境对生物细胞的影响提供一种新型的定量测量手段。
The dynamic measurement of biological cells has been based on the qualitative observations for a long time. As a transparent sample, a cell’s optical path length is linearly related to cell morphology and cytoplasm concentration. As a result, the living state of a cell can be reflected by the optical path length quantitatively. Optical path length can be obtained by digital holographic microscopy without damaging the sample. In this paper, we used the transmission digital holographic microscopy system to observe the HeLa cells and Escherichia coli dynamically to obtain the optical path lengths. By analyzing the relationship between optical path lengths and living state of biological cells, a new quantitative measurement method is proposed to explore the influences caused by the environment.

References

[1]  Mann, C., Yu, L., Lo, C.-M. and Kim, M. (2005) High-Resolution Quantitative Phase-Contrast Microscopy by Digital Holography. Optics Express, 13, 8693-8698.
https://doi.org/10.1364/OPEX.13.008693
[2]  Khmaladze, A., Kim, M. and Lo, C.-M. (2008) Phase Imaging of Cells by Simultaneous Dual-Wavelength Reflection Digital Holography. Optics Express, 16, 10900-10911.
https://doi.org/10.1364/OE.16.010900
[3]  Mann, C.J., Yum, L. and Kim, K. (2006) Movies of Cellular and Sub-Cellular Motion by Digital Holographic Microscopy. BioMedical Engineering OnLine, 5, 21.
[4]  Charrière, F., Pavillon, N., Colomb, T., et al. (2006) Living Specimen Tomography by Digital Holographic Microscopy: Morphometry of Testate Amoeba. Optics Express, 14, 7005-7013.
https://doi.org/10.1364/OE.14.007005
[5]  Debailleul, M., Simon, B., Georges, V., et al. (2008) Holographic Microscopy and Diffractive Microtomography of Transparent Samples. Measurement Science and Technology, 19, 074009.
https://doi.org/10.1088/0957-0233/19/7/074009
[6]  Rappaz, B., Barbul, A., Hoffmann, A., et al. (2009) Spatial Analysis of Erythrocyte Membrane Fluctuations by Digital Holographic Microscopy. Blood Cells, Molecules, and Diseases, 42, 228-232.
https://doi.org/10.1016/j.bcmd.2009.01.018
[7]  Kemper, B., Carl, D., Schnekenburger, J., et al. (2006) Investigation of Living Pancreas Tumor Cells by Digital Holographic Microscopy. Journal of Biomedical Optics, 11, 034005.
https://doi.org/10.1117/1.2204609
[8]  Yu, L.F., Mohanty, S., Zhang, J., et al. (2009) Digital Holographic Microscopy for Quantitative Cell Dynamic Evaluation during Laser Microsurgery. Optics Express, 17, 12031-12038.
https://doi.org/10.1364/OE.17.012031
[9]  Christophe, M., Natacha, C., Gwennou, C., et al. (2008) Fast Measurements of Concentration Profiles inside Deformable objects in Microflows with Reduced Spatial Coherence Digital Holography. Applied Optics, 47, 5305-5314.
https://doi.org/10.1364/AO.47.005305

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133