全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2019 

应用深度神经网络对多导睡眠图的睡眠分期研究
Application of Deep Neural Network to Study the Sleep Stage Scoring on the Polysomnography

DOI: 10.12677/BIPHY.2019.72002, PP. 11-25

Keywords: 睡眠分期,多通道,卷积神经网络,脑电图,眼电图
Sleep Stage Classification
, Multichannel, Convolutional Neural Network, EEG, EOG

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统上,自动睡眠分期是一项非常具有挑战性且费时费力的任务。大多数现有的自动睡眠分期方法都基于单通道的脑电(electroencephalography, EEG)数据,然而,这些方法忽略了医师从整体上观测多个通道EEG信号进行睡眠阶段评分的过程。为了解决这一问题,我们优化了数据结构,对医师的评分过程进行了详细的学习与建模,提出了一种基于多通道脑电图的自动睡眠评分方法。我们介绍了在原始EEG与EOG样本上使用深度卷积神经网络(convolutional neural network, CNN)进行睡眠阶段评分的监督学习。该网络具有11层,每30 s的睡眠数据作为一个分期,并且不需要任何信号预处理或特征提取。本文使用来自福建省某医院的EEG与EOG及专家评估的多导睡眠图(polysomnography, PSG)数据对系统进行训练和评估。实验结果表明,在自动睡眠分期的研究中不应该忽略EOG数据。我们的系统性能与中级睡眠分期专家的结果相当。
In the field of medical informatics, the automatic sleep staging is a challenging and time-consuming task, and most existing automatic sleep staging methods are based on single channel electroencephalography (EEG) data. However, these methods ignore the physician’s overall observation of multiple channel EEG and EOG signals for the sleep stage scoring. To resolve this problem, we propose an automatic sleep scoring method based on multi-channel EEG, including three-channel EEG and two-channel Electrooculogram (EOG) data. We introduce the use of a deep convolutional neural network (CNN) on raw EEG samples for supervised learning of sleep stage prediction, which does not require any signal preprocessing or feature extraction. We use the EEG and EOG of polysomnography (PSG) data which have been assessed by medical expert from a Hospital of Fujian Province to train and evaluate our system. Comparing with the staging result with single-channel EEG data, we indicate that the EOG data should not be ignored for a better sleep staging. It shows that the performance of our system is comparable to that of mid-level experts.

References

[1]  Wulff, K., Gatti, S., Wettstein, J.G. and Foster, R.G. (2010) Sleep and Circadian Rhythm Disruption in Psychiatric and Neurodegenerative Disease. Nature Reviews Neuroscience, 11, 589-599. https://doi.org/10.1038/nrn2868
[2]  Berry, R.B., Brooks, R., Gamaldo, C.E., Harding, S.M., Marcus, C.L. and Vaughn, B.V. (2012) The AASM Manual for the Scoring of Sleep and Associated Events, Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine, Darien, IL, 176.
[3]  Stepnowsky, C., Levendowski, D., Popovic, D., Ayappa, I. and Rapoport, D.M. (2013) Scoring Accuracy of Automated Sleep Staging from a Bipolar Electroocular Recording Compared to Manual Scoring by Multiple Raters. Sleep Medicine, 14, 1199-1207. Https://Doi.Org/10.1016/J.Sleep.2013.04.022
[4]  Wang, Y., Loparo, K.A., Kelly, M.R. and Kaplan, R.F. (2015) Evaluation of an Automated Single-Channel Sleep Staging Algorithm. Nature and Science of Sleep, 7, 101-111. https://doi.org/10.2147/NSS.S77888
[5]  Huang, C.-S., Lin, C.-L., Ko, L.-W., Liu, S.-Y., Su, T.-P. and Lin, C.-T. (2014) Knowledge-Based Identification of Sleep Stages Based on Two Forehead Electroencephalogram Channels. Frontiers in Neuroscience, 8, 263. https://doi.org/10.3389/fnins.2014.00263
[6]  Güne?, S., Polat, K. and Yosunkaya, ?. (2010) Efficient Sleep Stage Recognition System Based on EEG Signal Using k-Means Clustering Based Feature Weighting. Expert Systems with Applications, 37, 7922-7928. https://doi.org/10.1016/j.eswa.2010.04.043
[7]  Tsinalis, O., Matthews, P.M. and Guo, Y. (2016) Automatic Sleep Stage Scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders. Annals of Biomedical Engineering, 44, 1587-1597. https://doi.org/10.1007/s10439-015-1444-y
[8]  Sharma, R., Pachori, R.B. and Upadhyay, A. (2017) Automatic Sleep Stages Classification Based on Iterative Filtering of Electroencephalogram Signals. Neural Computing and Applications, 28, 2959-2978. https://doi.org/10.1007/s00521-017-2919-6
[9]  Hassan, A.R. and Subasi, A. (2017) A Decision Support System for Automated Identification of Sleep Stages from Single-Channel EEG Signals. Knowledge-Based Systems, 128, 115-124. https://doi.org/10.1016/j.knosys.2017.05.005
[10]  Cecotti, H. and Graser, A. (2011) Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 433-445. https://doi.org/10.1109/TPAMI.2010.125
[11]  Manor, R. and Geva, A.B. (2015) Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI. Frontiers in Computational Neuroscience, 9, 146. https://doi.org/10.3389/fncom.2015.00146
[12]  Page, A., Shea, C. and Mohsenin, T. (2016) Wearable Seizure Detection Using Convolutional Neural Networks with Transfer Learning. 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 22-25 May 2016, 1086-1089. https://doi.org/10.1109/ISCAS.2016.7527433
[13]  Hajinoroozi, M., Mao, Z. and Huang, Y. (2015) Prediction of Driver’s Drowsy and Alert States from EEG Signals with Deep Learning. 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 13-16 December 2015, 493-496. https://doi.org/10.1109/CAMSAP.2015.7383844
[14]  Drouin-Picaro, A. and Falk, T.H. (2016) Using Deep Neural Networks for Natural Saccade Classification from Electroencephalograms. 2016 IEEE EMBS International Student Conference (ISC), Ottawa, ON, 29-31 May 2016, 1-4. https://doi.org/10.1109/EMBSISC.2016.7508606
[15]  Manzano, M., Guillén, A., Rojas, I. and Herrera, L.J. (2017) Combination of EEG Data Time and Frequency Representations in Deep Networks for Sleep Stage Classification. In: Huang, D.S., Jo, K.H., Figueroa-García, J., Eds., Intelligent Computing Theories and Application (ICIC 2017), Lecture Notes in Computer Science, vol 10362, Springer, Cham, 219-229. https://doi.org/10.1007/978-3-319-63312-1_20
[16]  Supratak, A., Dong, H., Wu, C. and Guo, Y. (2017) DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1998-2008. https://doi.org/10.1109/TNSRE.2017.2721116
[17]  Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) Gradi-ent-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791
[18]  Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) Imagenet Classification with Deep Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L. and Weinberger, K.Q., Eds., Proceedings of the 25th International Conference on Neural Information Processing Systems, Curran Associates Inc., New York, 1097-1105.
[19]  Collobert, R. and Weston, J. (2008) A Unified Architecture for Natural Language Pro-cessing: Deep Neural Networks with Multitask Learning. In: Proceedings of the 25th International Conference on Machine Learning, ACM, New York, 160-167. https://doi.org/10.1145/1390156.1390177
[20]  Van den Oord, A., Dieleman, S. and Schrauwen, B. (2013) Deep Content-Based Music Recommendation. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z. and Weinberger, K.Q., Eds., Proceedings of the 26th International Conference on Neural Information Processing Systems, Curran Associates Inc., New York, 2643-2651.
[21]  Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H. and Juditsky, A. (1995) Nonlinear Black-Box Modeling in System Identification: A Unified Overview. Automatica, 31, 1691-1724. https://doi.org/10.1016/0005-1098(95)00120-8
[22]  Mirowski, P.W., Madhavan, D. and LeCun, Y. (2007) Time-Delay Neural Networks and Independent Component Analysis for EEG-Based Prediction of Epileptic Seizures Propagation. Proceedings of the 22nd AAAI Conference on Artificial Intelligence, Vancouver, 22-26 July 2007, 1892-1893.
[23]  LeCun, Y., Huang, F.J. and Bottou, L. (2004) Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, 27 June-2 July 2004, 97-104.
[24]  LeCun, Y., Kavukcuoglu, K. and Farabet, C. (2010) Convolutional Networks and Applications in Vision. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, 30 May-2 June 2010, 253-256. https://doi.org/10.1109/ISCAS.2010.5537907
[25]  L?ngkvist, M., Karlsson, L. and Loutfi, A. (2012) Sleep Stage Classification Using Unsupervised Feature Learning. Advances in Artificial Neural Systems, 2012, Article ID: 107046. https://doi.org/10.1155/2012/107046
[26]  Chambon, S., Galtier, M.N., Arnal, P.J., Wainrib, G. and Gramfort, A. (2018) A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26, 758-769. https://doi.org/10.1109/TNSRE.2018.2813138
[27]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 27-30 June 2016, 770-778. https://doi.org/10.1109/CVPR.2016.90
[28]  Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C. and Stanley, H.E. (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, e215-e220. https://doi.org/10.1161/01.CIR.101.23.e215
[29]  Sors, A., Bonnet, S., Mirek, S., Vercueil, L. and Payen, J.-F. (2018) A Convolutional Neural Network for Sleep Stage Scoring from Raw Single-Channel EEG. Biomedical Signal Processing and Control, 42, 107-114. https://doi.org/10.1016/j.bspc.2017.12.001
[30]  Jung, Y. (2018) Multiple Predicting k-Fold Cross-Validation for Model Selection. Journal of Nonparametric Statistics, 30, 197-215. https://doi.org/10.1080/10485252.2017.1404598
[31]  Kingma, D.P. and Ba, J. (2015) Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, San Diego, CA, 7-9 May 2015, 1-13.
[32]  Wei, L., Lin, Y., Wang, J. and Ma, Y. (2017) Time-Frequency Convolutional Neural Network for Automatic Sleep Stage Classification Based on Single-Channel EEG. 2017 IEEE 29th International Conference on Tools with Artificial Intel-ligence, Boston, MA, 6-8 November 2017, 88-95. https://doi.org/10.1109/ICTAI.2017.00025
[33]  Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H. and Dickhaus, H. (2012) Automated Sleep Stage Identification System Based on Time-Frequency Analysis of a Single EEG Channel and Random Forest Classifier. Computer Methods and Programs in Biomedicine, 108, 10-19. https://doi.org/10.1016/j.cmpb.2011.11.005
[34]  Tsinalis, O., Matthews, P.M., Guo, Y. and Zafeiriou, S. (2016) Automatic Sleep Stage Scoring with Single-Channel EEG Using Convolutional Neural Networks. Machine Learning, arXiv: 1610.01683.
[35]  Dietterich, T.G. (2000) Ensemble Methods in Machine Learning. In: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1-15. https://doi.org/10.1007/3-540-45014-9_1
[36]  Huang, C., Li, Y., Change Loy, C. and Tang, X. (2016) Learning Deep Representation for Imbalanced Classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 27-30 June 2016, 5375-5384. https://doi.org/10.1109/CVPR.2016.580
[37]  Cugell, D.W. (1985) Lung Sounds: Classification and Controversies. Seminars in Respiratory and Critical Care Medicine, 6, 180-182. https://doi.org/10.1055/s-2007-1011495
[38]  Olmez, T. and Dokur, Z. (2003) Classification of Heart Sounds Using an Artificial Neural Network. Pattern Recognition Letters, 24, 617-629. https://doi.org/10.1016/S0167-8655(02)00281-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133