全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乳山河地下水库建库条件与调蓄能力分析
Construction Conditions and Storage Capacity Analysis of Rushan River Underground Reservoir

DOI: 10.12677/JWRR.2019.83036, PP. 304-311

Keywords: 乳山河,地下水库,地下水回灌,Visual MODFLOW,数值模拟,调蓄分析
Rushan River
, Groundwater Reservoir, Artificial Recharge to Groundwater, Visual MODFLOW, Numerical Simulation, Regulation Capacity Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

乳山市位于山东半岛东南端,总面积1668 km2,是山东省工农业发展水平较高的地区之一。随着工农业的迅速发展,用水需求不断增加,水资源供需矛盾日益突出,亟需开辟新的水源工程以增加供水量。为此,结合乳山地区的水文地质条件,初步研究了在乳山河流域下游兴建地下水库的可行性,确定了地下水库库址,并利用 MODFLOW进行了数值模拟和调蓄分析,得出以下结论:1) 在乳山河流域下游可以兴建地下水库,地下水库总库容约2197万m3;2) 从补给水源条件上看,拦蓄当地地表径流是乳山河地下水库的主要补给水源;3) 乳山河地下水库建成后,丰水年、平水年、枯水年、特枯水年水库的调蓄水量分别为1790万m3,1664万m3,782万m3,404万m3;4) 建设地下水库,不占用过多耕地、无大量移民搬迁问题且水量蒸发损失少,是提高乳山地区水资源利用率的有效手段。研究成果可为乳山市水资源开发和综合利用规划参考使用。
Rushan city is located at the southeast area of Shandong Peninsula, with a total area of 1668 km2, and is one of the areas with a high level of industrial and agricultural development in Shandong Province. With the rapid development of industry and agriculture, the demand for water is constantly increasing, and the contradiction between water supply and demand is increasingly prominent. According to the hydrogeological conditions of the Rushan city, we preliminarily studied the feasibility of building an underground reservoir in the lower reaches of the Rushan river basin. We carried out numerical simulation and regulation capacity analysis by MODFLOW. The conclusions are as follows: 1) Groundwater reservoir can be built in the lower reaches of the Rushan river basin, and the total storage capacity is about 2197 × 104 m3; 2) From the perspective of supply water source conditions, the blocking of local surface runoff is the main water replenishment for the underground reservoir of Rushan river; 3) After the construction of the underground reservoir, the adjusted storage capacity in the wet, normal, dry and extremely dry years is 1790 × 104, 1664 × 104, 782 × 104 and 404 × 104 m3; 4) Because it does not occupy cultivated land, does not have migration problems and has less water evaporation loss, the construction of underground reservoirs is an effective means to improve the utilization rate of water resources. The results can be used as reference for water resources development and comprehensive utilization planning in Rushan city.

References

[1]  李旺林, 束龙仓, 殷宗泽. 地下水库的概念和设计理论[J]. 水力学报, 2006, 37(5): 613-617. LI Wanglin, SHU Longcang and YIN Zongze. Concept and design theory of underground reservoir. Journal of Hydraulics, 2006, 37(5): 613-617. (in Chinese)
[2]  AIKEN, G. R., KUNIANSKY, E. L. U.S. geological survey artificial re-charge workshop proceedings, April 2-4, 2002. USGS Open-File Report 02-89. 2002.
https://doi.org/10.3133/ofr0289
[3]  杜新强, 廖资生, 李砚阁. 含水层储存和回采技术的研究与应用[J]. 中国给水排水, 2004, 20(8): 24-26. DU Xinqiang, LIAO Zisheng and LI Yange. Study and application of aquifer storage and recovery (ASR) technology. China Water & Wastewater, 2004, 20(8): 24-26. (in Chinese)
[4]  韩再生. 为可持续利用而管理含水层补给[J]. 水文地质工程地质, 2002(6): 72-73. HAN Zaisheng. Aquifer recharge management for sustainable utilization. Hydrogeology and Engineering Geology, 2002(6): 72-73. (in Chinese)
[5]  MA, L., SPALDING, R. F. Effects of artificial recharge on ground water quality and aquifer storage recovery. Journal of the American Water Resources Association, 1997, 33(3): 561-572.
https://doi.org/10.1111/j.1752-1688.1997.tb03532.x
[6]  GETCHELL, F., WILEY, D. Artificial recharge enhances aquiter capacity. Water/Engineering and Management, 1995, 142(11): 24-25.
[7]  EASTWOOD, J. C., STANFIELD, P. J. Key success factors in an ASR scheme. Quarterly Journal of Engineering Geology and Hydrogeology, 2001, 34(4): 399-409.
https://doi.org/10.1144/qjegh.34.4.399
[8]  李旺林, 李英特. 山东省地下水库的建库模式和快速回灌技术[J]. 人民黄河, 2010, 32(10): 72-73. LI Wanglin, LI Yingte. Construction mode and rapid recharge technology of underground reservoirs in Shandong Province. People’s Yellow River, 2010, 32(10): 72-73. (in Chinese)
[9]  刘青勇, 马承新, 张保祥, 孟凡海, 王增亮. 黄水河地下水库管理数值模拟研究[J]. 水资源研究, 2004, 25(1): 1-3. LIU Qingyong, MA Chengxin, ZHANG Baoxiang, MENG Fanhai and WANG Zengliang. Numerical simulation of under-ground reservoir management in Huang Shuihe. Water Resources Research, 2004, 25(1): 1-3. (in Chinese)
[10]  上海市水文地质大队. 地下水人工回灌[M]. 北京: 地质出版社, 1977. Shanghai Hydrogeological Brigade. Artificial recharge of groundwater. Beijing: Geological Publishing House, 1977. (in Chinese)
[11]  北京市水文地质大队. 地下水人工补给, 水文地质工程地质选辑(第十六辑) [M]. 北京: 地质出版社, 1982. Beijing Hydrogeological Brigade. Artificial recharge of groundwater, selected hydrogeological engineering geology (vol. 16). Beijing: Geology Press, 1982. (in Chinese)
[12]  魏永纯, 伍军. 地下水人工补给与地下水库[M]. 北京: 水利电力出版社, 1979: 5. WEI Yongchun, WU Jun. Artificial recharge of groundwater and underground reservoirs. Beijing: Water Conservancy and Electric Power Press, 1979: 5. (in Chinese)
[13]  林学钰. 地下水库开发利用中的几个问题的探讨[J]. 长春: 长春地质学院, 1984. LIN Xueyu. Discussion on several problems in development and utilization of underground reservoirs. Changchun: Changchun Institute of Geology, 1984. (in Chinese)
[14]  赵天石. 关于地下水库几个问题的探讨[J]. 水文地质工程地质, 2002, 29(5): 65-67. ZHAO Tianshi. Discussion on several problems of underground reservoir. Hydrogeology and Engineering Geology, 2002, 29(5): 65-67. (in Chinese)
[15]  李旺林, 尹志远, 刘占磊, 魏鹏昆, 何家鹏. 多维反滤回灌井室内稳定流试验研究[J]. 岩土工程学报, 2017, 39(2): 327-333. LI Wanglin, YIN Zhiyuan, LIU Zhanlei, WEI Pengkun and HE Jiapeng. Experimental study on indoor steady flow of multidimensional backflow recharge well. Journal of Geotechnical Engineering, 2017, 39(2): 327-333. (in Chinese)
[16]  李旺林, 李英特. 反滤回灌井的改进技术[J]. 水利水电技术, 2013, 44(2): 48-50+54. LI Wanglin, LI Yingte. Improved technology of backwash recharge well. Water Conservancy and Hydropower Technology, 2013, 44(2): 48-50+54. (in Chinese)
[17]  魏鹏昆, 李旺林, 李纳, 吴泽华, 徐芳, 何家鹏. 对偶反滤回灌井室内稳定流试验研究[J]. 中国农村水利水电, 2016(10): 86-90+94. WEI Pengkun, LI Wanglin, LI Na, WU Zehua, XU Fang and HE Jiapeng. Experimental study on indoor steady flow of dual reverse filter recharge well. China Rural Water and Hydropower, 2016(10): 86-90 + 94. (in Chinese)
[18]  康华, 王友林, 金光. 基于地下水回灌试验及数值模拟的秦岭山前洪积扇地下水库调蓄功能研究[J]. 水资源与水工程学报, 2014, 25(1): 140-143. KANG Hua, WANG Youlin and JIN Guang. Study on regulation and storage function of flood fan underground reservoir in front of Qinling Mountain based on groundwater recharge test and numerical simulation. Journal of Water Resources and Water Engineering, 2014, 25(1): 140-143. (in Chinese)
[19]  刘记来, 刘超, 黄天明, 王素芬, 杜春龙, 季明峰. 基于调蓄实验及数值模拟的北京市西郊地下水库人工补给效果评估[J]. 水文, 2010, 30(3): 33-37. LIU Jilai, LIU Chao, HUANG Tianming, WANG Sufen, DU Chunlong and JI Mingfeng. Evaluation of artificial recharge effect of underground reservoir in western suburb of Beijing based on regulation and storage experiment and numerical simulation. Hydrology, 2010, 30(3): 33-37. (in Chinese)
[20]  魏晓燕, 张保祥, 李旺林, 刘冬梅, 张吉圣. 肥城盆地岩溶地下水系统数值模拟[J]. 中国农村水利水电, 2015(11): 59-64. WEI Xiaoyan, ZHANG Baoxiang, LI Wanglin, LIU Dongmei and ZHANG Jisheng. Numerical simulation of karst groundwater system in Feicheng basin. China Rural Water and Hydropower, 2015(11): 59-64. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133