全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生长方形缝隙分形阵列超宽频带天线设计
Design of the Growing Square Slot Fractal Array Ultra Wideband Antenna

DOI: 10.12677/HJWC.2019.93014, PP. 112-118

Keywords: 生长方形缝隙结构,“嵌入式”缝隙分形,矩形阵列天线,相对介电常数渐变薄膜,钽铌酸钾薄片,铁基纳米晶合金镀层,超宽频带天线
Growing Square Slot Structure
, Embedded Slot Fractal, Rectangular Array Antenna, Relative Dielectric Constant Gradual Thin Film, Potassium Tantalum Niobate Thin Film, Fe-Based Nanocrystalline Alloy Coating, Ultra Wideband Antenna

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对微波多频段兼容系统对天线的性能要求,将生长方形缝隙结构、“嵌入式”缝隙分形迭代结构、矩形阵列天线、相对介电常数渐变薄膜、钽铌酸钾薄片、铁基纳米晶合金镀层、石墨烯导电墨水等一系列先进的技术和材料有机结合,设计了一款生长方形缝隙分形阵列超宽频带天线。实测结果表明,该款天线具有稳定可靠的超宽频带辐射能力,能够抵抗外界电磁信号干扰,性能冗余充足,尺寸小,辐射强度高,能够完全覆盖第二代至第五代移动通信频段、射频识别频段、超宽带通信频段和移动数字电视频段,在即将到来的微波频段多网合一时代有巨大的应用前景。
According to the performance requirements of the antennas for the microwave multi band com-patible system, the present paper originally combines growing square slot structure, embedded slot fractal iterative structure, rectangular array antenna, relative dielectric constant gradual thin film, potassium tantalum niobate thin film, Fe-based nanocrystalline alloy coating and graphene conductive ink, to design a growing square slot fractal array ultra wideband antenna. The result of test indicates that this antenna has stable and reliable ultra-wideband radiation capability, can resist external electromagnetic signal interference, and has sufficient redundancy, small size and high radiation intensity. This antenna completely covered all working frequency bands of the se-cond generation to the fifth generation mobile communication, the frequency bands of the radio frequency identification system, the frequency band of the ultra wideband system, and the fre-quency band of the mobile digital TV system. This antenna will have great application prospects in the coming era of microwave band multi-network integration.

References

[1]  Bekali, Y.K. and Essaaidi, M. (2013) Compact Reconfigurable Dual Frequency Microstrip Patch Antenna for 3G And 4G Mobile Communication Technologies. Microwave and Optical Technology Letters, 55, 1622-1626.
https://doi.org/10.1002/mop.27649
[2]  杨骅, 周正兰. TD-LTE标准的深度分析[J]. 移动通信, 2015, 39(1): 7-11.
[3]  Qian, M., Wang, Y., Zhou, Y., Tian, L. and Shi, J.-L. (2015) A Super Base Station Based Centralized Net-work Architecture for 5G Mobile Communication Systems. Digital Communications and Networks, 1, 152-159.
https://doi.org/10.1016/j.dcan.2015.02.003
[4]  He, J.-L., Xu, Y.-J. and Xu, Z.-Q. (2014) Secure and Private Protocols for Server-Less RFID Systems. International Journal of Control and Automation, 7, 131-142.
https://doi.org/10.14257/ijca.2014.7.2.13
[5]  Wei, X., Mei, T., Yu, L., et al. (2017) Triple Band-Notched UWB Monopole Antenna on Ultra-thin Liquid Crystal Polymer Based on ESCSRR. Electronics Letters, 53, 57-58.
https://doi.org/10.1049/el.2016.3807
[6]  Liao, W.-J., Chou, S.-H., Chen, Y.-A., et al. (2017) Frequency Recon-figurable Antenna for VHF/UHF Digital TV Reception on Portable Devices Using Switching Matching Networks. Mi-crowave and Optical Technology Letters, 59, 2800-2806.
https://doi.org/10.1002/mop.30819
[7]  Huang, Y.M., Leung, V.C.M., Lai, C.-F., Mukhopadhyay, S. and Lai, R.X. (2015) Reconfigurable Software Defined Radio in 5G Mobile Communication Systems. IEEE Wireless Communications, 22, 12-14.
https://doi.org/10.1109/MWC.2015.7368819
[8]  Chen, S.-J., Dong, D.-C., Liao, Z.-Y., et al. (2014) Compact Wideband and Dual-Band Antenna for TD-LTE and WLAN Applications. Electronics Letters, 50, 1111-1112.
https://doi.org/10.1049/el.2014.1576
[9]  Elsheakh, D.M. and Safwat, A.M.E. (2014) Compact 3D USB Dongle Monopole Antenna for Mobile Wireless Communication Bands. International Journal of Microwave and Wireless Technologies, 6, 639-644.
https://doi.org/10.1017/S1759078714000245
[10]  Chen, K. (2012) MIMO Beamforming and Its Impact on Testing TD-LTE. Microwave Journal, 55, 96-102.
[11]  樊磊, 骆延, 黄卡玛, 等. 一种基于分形结构的树生长微带天线设计[J]. 太赫兹科学与电子信息学报, 2014, 12(2): 229-232.
[12]  Belhadef, Y. and Hacene, N.B. (2012) Multiband F-PIFA Fractal Antennas for the Mobile Communication Systems. International Journal of Computer Science Issues, 9, 266-270.
[13]  Kaboli, O., Ashtasbi, A. and Monajati, A. (2015) Design, Simulation, Fabrication and Measurement of 900MHZ Newhybrid Fractal Dipole Antenna. International Journal of Electronics Communication and Computer Engineering, 6, 20-22.
[14]  毛建军, 于大群, 焦永昌. 一种用于5G的大规模MIMO天线阵设计[J]. 现代雷达, 2016, 38(2): 66-69.
[15]  刘宁, 袁宏伟. 5G大规模天线系统研究现状及发展趋势[J]. 电子科技, 2015, 28(4): 182-185.
[16]  Guan, L., Rulikowski, P. and Kearney, R. (2016) Flexible Practical Multi-Band Large Scale An-tenna System Architecture for 5G Wireless Networks. Electronics Letters, 52, 970-972.
https://doi.org/10.1049/el.2015.4370
[17]  Ma, D. and Saxena, N. (2014) A Context-Aware Approach to Defend Against Unauthorized Reading and Relay Attacks in RFID Systems. Security and Communication Networks, 7, 2684-2695.
https://doi.org/10.1002/sec.404
[18]  Wang, C.-F., Zhong, S.-M. and Wang, J. (2014) Design of Ab-normal Data Analysis and Processing System Based on RFID Supply Chain. International Journal of Multimedia and Ubiquitous Engineering, 9, 349-360.
[19]  戴世青. 基于数字移动电视新技术新发展的探讨[J]. 科技传播, 2015, 7(2): 110+72.
[20]  黄金伟. 浅析移动数字电视技术及其应用[J]. 中国新通信, 2016, 18(7): 37-38.
[21]  Silva, V.J., Ferreira, V.F.D. and Viana, N.S. (2015) Architecture for Integrating Healthcare Services to the Brazilian Digital TV System. IEEE Latin America Transactions, 13, 241-249.
https://doi.org/10.1109/TLA.2015.7040654
[22]  Carey, J. (2016) Audience Measurement of Digital TV. International Journal of Digital Television, 7, 119-132.
https://doi.org/10.1386/jdtv.7.1.119_1
[23]  Pratap, L.B., Kundu, D. and Mohan, A. (2016) Planar Microstrip-Fed Broadband Circularly Polarized Antenna for UWB Applications. Microwave and Optical Technology Letters, 58, 1088-1093.
https://doi.org/10.1002/mop.29739
[24]  Khalid, S., Wen, W.-P. and Cheong, L.Y. (2014) Synthesis Design of UWB Bandpass Filter Using Multiple Resonance Resonator (MRR). Electronics Letters, 50, 1851-1853.
https://doi.org/10.1049/el.2014.3010
[25]  Tripathi, S., Mohan, A. and Yadav, S. (2017) A Compact UWB Koch Fractal Antenna for UWB Antenna Array Applications. Wireless Personal Communications, 92, 1423-1442.
https://doi.org/10.1007/s11277-016-3613-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133