全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于深度神经网络的译码器抽象方法
A Decoder Abstraction Method Based on Deep Neural Network

DOI: 10.12677/HJWC.2019.93013, PP. 105-111

Keywords: 深度神经网络,译码器抽象,特征提取
Deep Neural Network
, Decoder Abstraction, Feature Extraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

在通信系统的仿真中,能否准确模拟出链路级译码结果对系统级仿真结果的可信度有重要意义。本文提出一种基于深度神经网络的译码器抽象方法,该方法从译码器的软输入中提取三个特征量,借助神经网络模型来预测码字的译码是否成功。仿真结果表明,本文所提出的基于深度神经网络的方法比EESM等传统方法有更好的预测精度。
In the simulation of communication system, it is important to simulate the link decoding result accurately. This paper proposes a decoder abstraction method based on deep neural network (DNN), which extracts three features from the soft input of the decoder and uses the neural network model to predict the decoding success. Simulation results show that the method proposed in this paper has better prediction accuracy than traditional methods such as EESM.

References

[1]  陈伟, 孙引, 李云洲, 等. 基于Matlab的LTE系统级仿真平台的建立[J]. 通信技术, 2010, 43(5): 170-172.
[2]  Capozzi, F., Piro, G., Grieco, L.A., et al. (2012) A System-Level Simulation Framework for LTE Femtocells. 5th International ICST Conference on Simulation Tools and Techniques, Desenzano del Garda, 19-23 March 2012, 211-213.
https://doi.org/10.4108/icst.simutools.2012.247767
[3]  Ikuno, J.C., Wrulich, M. and Rupp, M. (2010) System Level Simulation of LTE Networks. 71st Vehicular Technology Conference, Taipei, 16-19 May 2010, 1-5.
https://doi.org/10.1109/VETECS.2010.5494007
[4]  Lei, H., Zhang, L., Zhang, X., et al. (2007) System Level Evaluation of 3G Long Term Evolution. 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, 3-7 September 2007, 1-5.
https://doi.org/10.1109/PIMRC.2007.4394433
[5]  Li, X., Fang, Q. and Shi, L. (2011) A Effective SINR Link to System Mapping Method for CQI Feedback in TD-LTE System. 2th International Conference on Computing, Control and Industrial Engi-neering, Wuhan, 20-21 August 2011, 208-211.
https://doi.org/10.1109/CCIENG.2011.6008103
[6]  Hanzaz, Z. and Schotten, H.D. (2013) Impact of L2S Interface on System Level Evaluation for LTE System. 11th Malaysia International Conference on Communications, Kuala Lumpur, 26-28 November 2013, 456-461.
https://doi.org/10.1109/MICC.2013.6805873
[7]  Gaveau, J., Martret, C.L. and Assaad, M. (2017) Grouping of Subcarriers and Effective SNR Statistics in Wideband OFDM Systems Using EESM. 13th IEEE International Conference on Wireless & Mobile Computing, Networking and Communications, Rome, 9-11 October 2017, 1-7.
https://doi.org/10.1109/WiMOB.2017.8115800
[8]  娄文科, 林辉, 曾志民. 基于互信息域的L2S接口方法研究[J]. 无线电通信技术, 2006, 32(5): 13-15.
[9]  Aguilar, F.L., Cidre, G.R., López, J.M., et al. (2010) Mutual Information Effective SNR Mapping Algorithm for Fast Link Adaptation Model in 802.16e. In: Chatzimisios, P., et al., Eds., Mobile Lightweight Wireless Systems, Springer, Berlin Heidelberg, 356-367.
https://doi.org/10.1007/978-3-642-16644-0_31
[10]  Li, Y., Long, H., Yang, H., et al. (2017) Coexistence of LTE and WLAN Systems and Improvement of L2S Interface. IEEE/CIC International Conference on Communications in China, Qingdao, 22-24 October 2017, 1-6.
https://doi.org/10.1109/ICCChina.2017.8330441
[11]  Nie, W. and Yang, H. (2010) A New Link Level to System Level Simu-lation Interface Method. International Conference on Audio Language & Image Processing, Shanghai, 23-25 November 2010, 1311-1314.
https://doi.org/10.1109/ICALIP.2010.5685070
[12]  Khan, A., Ullah, I. and Khattak, S. (2017) Link to System Interfacing for Multiple Input and Multiple Output Wireless System Using Maximum Likelihood Receiver. IET Communications, 11, 1346-1351.
https://doi.org/10.1049/iet-com.2016.0019
[13]  Chu, E., Jang, H.J. and Jung, B.C. (2018) Machine Learning Based Link-to-System Mapping for System-Level Simulation of Cellular Networks. 10th International Conference on Ubiquitous and Future Networks, Prague, 3-6 July 2018, 503-506.
https://doi.org/10.1109/ICUFN.2018.8436754
[14]  Hu, X.Y., Eleftheriou, E., Arnold, D.M., et al. (2001) Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes. 2nd IEEE Global Telecommunications Conference, Vol. 2, San Antonio, 25-29 November 2001, 1036.
[15]  何燕锋, 杨鸿文, 郭文彬. 高阶调制的软输出算法比较[J]. 北京邮电大学学报, 2003, 26(1): 82-85.
[16]  Dahl, G.E., Sainath, T.N. and Hinton, G.E. (2013) Improving Deep Neural Networks for LVCSR Using Rectified Linear Units and Dropout. Acoustics, Speech and Signal Processing, Vancouver, 26-30 May 2013, 8609-8613.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133