全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高选择性CO2吸附剂的制备及评测
Investigation of High Selectivity Adsorbent for Carbon Capture

DOI: 10.12677/JAPC.2019.82005, PP. 40-46

Keywords: 碳捕集,沸石分子筛,吸附,选择性
Carbon Capture
, Zeolite, Adsorption, Selectivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳捕集是工业生产和环境保护领域中至关重要的课题,高选择性CO2吸附剂是目前该领域的热点研究方向之一。本文基于位阻效应机理,使用离子交换法对4A沸石分子筛进行改性,制备了不同K+交换率沸石分子筛样品,并针对CO2-N2体系进行吸附平衡和吸附动力学测试。研究结果表明,K+交换率对吸附性能有重要的影响,K+的增加会显著降低N2的吸附量并使分子筛具有了择形吸附的功能,其中14.7%交换率的改性分子筛具有600左右的高选择性以及较快的吸附速率,具备了很好的应用前景。
Carbon capture has always been widely concerned in regard to environmental protection and in-dustrial manufacturing. The carbon capture materials with high CO2 selectivity and adsorbing ca-pacity become one of the urgent problems to be solved at present. On the basis of the steric effect, the ion exchange method was adopted to modify the zeolite 4A with K+ to achieve high selectivity adsorbents. The adsorption equilibrium data and the adsorption kinetic data of CO2/N2 were measured using the static adsorbing tests. The experimental and analytical results demonstrate that the exchange rate has important influence on the adsorption properties. The capacity of N2 on various zeolites would decrease greatly with higher exchange rate. The adsorbent with 14.7% ex-change rate has good performance for adsorption selectivity and kinetics, with the selectivity about 600. It may be fundamental for applications of carbon capture by adsorption.

References

[1]  Rubin, E.S., Mantripragada, H., Marks, A., et al. (2012) The Outlook for Improved Carbon Capture Technology. Progress in Energy and Combustion Science, 38, 630-671.
https://doi.org/10.1016/j.pecs.2012.03.003
[2]  Marcello, D.F. (2013) CO2: A Valuable Source of Carbon. Springer Verlag, Berlin, 15-20.
[3]  Amitesh, M. (2009) Theoretical Screening of Ionic Liquid Solvents for Carbon Capture. ChemSusChem, 2, 628-631.
https://doi.org/10.1002/cssc.200900086
[4]  Service, R.F. (2004) Choosing a CO2 Separation Technology. Science, 305, 963-964.
https://doi.org/10.1126/science.305.5686.963
[5]  Merkel, T.C., Lin, H.Q., Wei, X.T., et al. (2010) Power Plant Post-Combustion Carbon Dioxide Capture: An Opportunity for Membranes. Journal of Membrane Science, 369, 126-139.
https://doi.org/10.1016/j.memsci.2009.10.041
[6]  Merel, J., Clausse, M. and Meunier, F. (2008) Experimental Investigation on CO2 Postcombustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites. Industrial and Engineering Chemistry Research, 47, 209-215.
https://doi.org/10.1021/ie071012x
[7]  Na, B.K., Koo, K.K., Eum, H.M., et al. (2001) CO2 Recovery from Flue Gas by PSA Process Using Activated Carbon. Korean Journal of Chemical Engineering, 18, 220-227.
https://doi.org/10.1007/BF02698463
[8]  Casas, N., Schell, J., Blom R., et al. (2013) MOF and UiO-67/MCM-41 Adsorbents for Pre-Combustion CO2 Capture by PSA: Breakthrough Experiments and Process Design. Separation and Purification Technology, 112, 34-48.
https://doi.org/10.1016/j.seppur.2013.03.042
[9]  Phan, A., Doonan, C.J., Uriberomo, F.J., et al. (2010) Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43, 58-67.
https://doi.org/10.1021/ar900116g
[10]  Davis, M.E. and Lobo, R.F. (1992) Zeolite and Molecular Sieve Synthesis. Chemistry of Materials, 4, 756-768.
https://doi.org/10.1021/cm00022a005
[11]  Jaroniec, M. and Mady, R. (1988) Physical Adsorption on Heterogeneous Solids. Elsevier Science Ltd., New York, 75-81.
[12]  Cussler, E.L. (2009) Diffusion Mass Transfer in Fluid Systems. Cambridge, New York, 16-20.
https://doi.org/10.1017/CBO9780511805134

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133