全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

山东省近5a PM2.5浓度时空分布特征
Spatial and Temporal Distribution Characteristics of PM2.5 in Shandong Province in the Past Five Years

DOI: 10.12677/GSER.2019.82020, PP. 187-196

Keywords: 山东省,PM2.5浓度,时空分布
Shandong Province
, PM2.5 Concentration, Spatial-Temporal Pattern

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于山东省2014~2018年各地级市PM2.5质量浓度数据,利用山东省PM2.5浓度的平均场,逐年平均值、季节平均值、日平均值及逐小时浓度数据,分析了近5年山东省PM2.5浓度的时空分布特征。研究结果表明:空间维度上,PM2.5浓度大致呈现由沿海向内陆逐渐升高的趋势,内陆的泰安和济宁PM2.5浓度较低。时间维度上,自2014年至今PM2.5浓度表现为逐年稳定下降的趋势;季节变化上呈现出冬季最高、春秋次之,夏季最低的特点;内陆地区一天中的PM2.5的浓度变化呈双峰分布,而沿海地区日变化较为平缓且浓度较低。
Based on the PM2.5 mass concentration data of each city in Shandong province, this paper not only studied the average field, annual average, seasonal average, daily average and hourly concentration data of PM2.5 in Shandong province, but also studied the spatial and temporal distribution characteristics of concentration of PM2.5 in Shandong province in 2014-2018. The results show that in the spatial dimension, PM2.5 generally shows a trend of increasing from coastal to inland, and due to the influence of topography, economy, humanities and other factors. The distribution of concentration shows the characteristics of low concentration in developed areas as well as in high altitude areas. In the time dimension, since 2014, PM2.5 concentration has shown a steady decline year by year, and in the seasonal variation, it showed a regulation of low in summer and high in winter. The daily variation of PM2.5 concentration in the inland areas is double-peak, while the daily changes in coastal areas are more smooth and lower in concentration.

References

[1]  陆喜红, 任兰, 吴丽娟. 南京市大气PM2.5中重金属分布特征及化学形态分析[J]. 环境监控与预警, 2019, 11(1): 40-44.
[2]  王跃思, 姚利, 王莉莉, 等. 2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学: 地球科学, 2014, 44(1): 15-26.
[3]  潘小川, 李国星, 高婷. 危险的呼吸: PM2.5的健康危害和经济损失评估研究[M]. 北京: 中国环境科学出版社, 2012.
[4]  Jiménez, E., Linares, C., Rodríguez, L.F., Bleda, M.J. and Díaz, J. (2009) Short-Term Impact of Particulate Matter (PM2.5) on Daily Mortality among the Over-75 Age Group in Madrid (Spain). Science of the Total Environment, 407, 5486-5492.
https://doi.org/10.1016/j.scitotenv.2009.06.038
[5]  Janssen, N.A.H., Fischer, P., Marra, M., Ameling, C. and Cassee, F.R. (2013) Short-Term Effects of PM2.5, PM10 and PM2.5-10 on Daily Mortality in the Netherlands. Science of the Total Environment, 463-464, 20-26.
https://doi.org/10.1016/j.scitotenv.2013.05.062
[6]  Cox, L.A., Popken, D.A. and Ricci, P.F. (2013) Warmer Is Healthier: Effects on Mortality Rates of Changes in Average Fine Particulate Matter (PM2.5) Concentrations and Tem-peratures in 100 US Cities. Regulatory Toxicology and Pharmacology, 66, 336-346.
https://doi.org/10.1016/j.yrtph.2013.05.006
[7]  Pascal, M., Falq, G., Wagner, V., et al. (2014) Short-Term Im-pacts of Particulate Matter (PM10, PM10-2.5, PM2.5) on Mortality in Nine French Cities. Atmospheric Environment, 95, 175-184.
https://doi.org/10.1016/j.atmosenv.2014.06.030
[8]  南国卫, 孙虎, 朱一梅. 陕西省PM2.5时空分布规律及其影响因素[J]. 环境科学研究, 2018, 31(5): 834-843.
[9]  Wang, Y.-G., Ying, Q., HU, J.L. and Zhang, H.-L. (2014) Spatial and Temporal Variations of Six Criteria Air Pollutants in 31 Provincial Capital Cities in China during 2013-2014. Environment International, 73, 413-422.
https://doi.org/10.1016/j.envint.2014.08.016
[10]  谢志祥, 秦耀辰, 郑智成, 等. 京津冀大气污染传输通道城市PM2.5污染的死亡效应评估[J]. 环境科学学报, 2019, 39(3): 843-852.
[11]  Yin, D., Zhao, S. and Qu, J. (2016) Spatial and Seasonal Variations of Gaseous and Particulate Matter Pollutants in 31 Provincial Capital Cities, China. Air Quality Atmosphere & Health, 10, 359-370.
https://doi.org/10.1007/s11869-016-0432-1
[12]  隋玟萱, 王颢樾, 唐晓, 等. 山东省2015年PM2.5和O3污染时空分布特征[J]. 中国环境监测, 2019, 35(2): 59-69.
[13]  江亿, 唐孝炎, 倪维斗, 等. 北京PM2.5与冬季采暖热源的关系及治理措施[J]. 中国能源, 2014, 36(1): 7-13+28.
[14]  杨文雪, 张晶, 秦宇, 等. 北京市MODIS气溶胶光学厚度和PM2.5浓度的时空差异及其相关性研究[J]. 科学技术与工程, 2014, 14(31): 159-164.
[15]  Zhao, S., Yu, Y., Yin, D., He, J., Liu, N., Qu, J. and Xiao, J.-H. (2016) Annual and Diurnal Variations of Gaseous and Particulate Pollutants in 31 Provincial Capital Cities Based on in Situ Air Quality Monitoring Data from China National Environ-mental Monitoring Center. Environment International, 86, 92-106.
https://doi.org/10.1016/j.envint.2015.11.003
[16]  Chai, F., Gao, J., Chen, Z., et al. (2014) Spatial and Temporal Variation of Particulate Matter and Gaseous Pollutants in 26 Cities in China. Journal of Environmental Sciences, 26, 75-82.
https://doi.org/10.1016/S1001-0742(13)60383-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133