|
不同粒度水冷铜渣组织结构及热性能分析
|
Abstract:
铜渣是火法冶炼铜过程中产生的固体废弃物,含有大量的有价金属。为分离提取铜渣中的铁等有价组分,采用化学分析、X射线衍射、金相和热重等手段,研究了铜渣粒度对物相组成和金相结构的影响。实验结果表明:铜渣中含有较多Fe2O3、TiO2,有害杂质S含量较高,流动性较好。粒度大多分布在0.425~4 mm之间。铜渣中存在铁橄榄石(Fe2SiO4)、赤铁矿(Fe2O3)、磁铁矿(Fe3O4)和无定型结构的脉石玻璃体。随着煅烧温度的升高铜渣中的铁橄榄石氧化转变为赤铁矿和非晶态硅石,其次是磁铁矿的晶型发生转变(Fe3O4→γ-Fe2O3→α-Fe2O3)。
Copper slag is a solid waste produced in the process of smelting copper, which contains a large number of available resources. In order to separate and extract iron and other valuable compo-nents from copper slag, the effects of particle size of copper slag on phase composition and metal-lographic structure were studied by chemical analysis, X-ray diffraction, metallographic and thermogravimetric methods. The results show that copper slag contains more Fe2O3 and TiO2, and the harmful impurities have higher S content and good fluidity. The particle size is mostly distrib-uted between 0.425 mm and 4 mm. In the copper slag, fayalite (Fe2SiO4), hematite (Fe2O3), mag-netite (Fe3O4) and amorphous gangue glass were present. As the calcination temperature increases, the fayalite in the copper slag is oxidized to hematite and amorphous silica, followed by the transformation of the crystal form of magnetite (Fe3O4→ γ-Fe2O3→ α-Fe2O3).
[1] | 赖祥生, 黄红军. 铜渣资源化利用技术现状[J]. 金属矿山, 2017(11): 205-208. |
[2] | 王琛, 田庆华, 王亲猛, 等. 铜渣有价金属综合回收研究进展[J]. 金属材料与冶金工程, 2014, 42(6): 50-56. |
[3] | 曹洪杨, 张力, 付念新, 等. 国内外铜渣的贫化[J]. 材料与冶金学报, 2009, 8(1): 33-39. |
[4] | Muravyov, M.I., Fomchenko, N.V. and Usoltsev, A.V. (2012) Leaching of Copper and Zinc from Copper Converter Slag Flotation Tailings Using H2SO4and Biologically Generated Fe2(SO4)3. Hydrometallurgy, 119, 40-46.
https://doi.org/10.1016/j.hydromet.2012.03.001 |
[5] | Ahmed, I.M., Nayl, A.A. and Daoud, J.A. (2012) Leaching and Recovery of Zinc and Copper from Brass Slag by Sulfuric Acid. Journal of Saudi Chemical Society, 45, 1-6. |
[6] | Altundogan, H.S., Tumen, F. (1997) Metal Recovery from Copper Converter Slag by Roasting with Ferric Sulphate. Hydrometallurgy, 44, 261-267. https://doi.org/10.1016/S0304-386X(96)00038-2 |
[7] | Arslan, C. and Arslan, F. (2002) Recovery of Copper, Cobalt and Zinc from Copper Smelter and Converter Slag. Hydronletallurgy, 67, 1-7. https://doi.org/10.1016/S0304-386X(02)00139-1 |
[8] | Herreros, O., Quiroz, R. and Marlzano, E. (1998) Copper Extraction from Reverberatory and Flash Furnace Stags by Chlorine Leaching. Hydronletallurgy, 49, 87-101. https://doi.org/10.1016/S0304-386X(98)00010-3 |
[9] | Nadirov, R.K., Syzdykova, L.I., Zhussupova, A.K. and Zhussupova, A.K. (2013) Recovery of Value Metals from Copper Smelter Slag by Ammonium Chloride Treatment. International Journal of Mineral Processing, 124, 145-149.
https://doi.org/10.1016/j.minpro.2013.07.009 |
[10] | Vasburd, S., Brandon, A.G. and Kozhakhmetov, S.M. (2002) Physicochemicalproperties of Matte-Slag Melts Taken from Vanyulov’s Furnace for Copper Extraction. Metallurgical and Materials Transactions B, 33, 561-564.
https://doi.org/10.1007/s11663-002-0035-0 |
[11] | 王珩. 从炼铜厂炉渣中回收铜铁的研究[J]. 广东有色金属学报, 1998, 18(2): 56-65. |
[12] | 雷贵春. 浅论铜渣选矿及综合利用[J]. 矿产综合利用, 1996(5): 17-20. |
[13] | 李磊, 王华, 胡建杭, 等. 铜渣综合利用的研究进展[J]. 冶金能源, 2009, 28(1): 44-48. |
[14] | 曹洪杨, 付念新, 王慈公. 铜渣中铁组分的选择性析出与分离[J]. 矿产综合利用, 2009, 4(2): 8-11. |