全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于卷积神经网络室内火焰烟雾识别
Indoor Flame Smoke Identification Based on Convolutional Neural Network

DOI: 10.12677/CSA.2019.96133, PP. 1183-1191

Keywords: 烟雾特征,计算机视觉,神经网络
Characteristics of Smoke
, Computer Vision, The Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

人们在生活中面临的最大问题是室内火灾问题。近年来,基于图像模式识别的火灾探测技术引起了众多研究者的关注,并得到了迅速的发展。技术以计算机技术为核心,结合图像处理技术和模式识别技术,可以对火灾火焰和烟雾特征实现有效的检测和识别,在人流聚集的市场、企业事业单位的办公区域和生产车间区域火灾报警可以发挥出重要的作用。本文分析了烟雾和火焰模式识别的难点,使用运动学检测方法、特征提取、卷积神经网络等方法解决了传统方法对室内烟雾和火焰识别不准确的缺点。结果表明,该识别方案的准确率可以达到93%。
The biggest problem people face in life is the problem of indoor fire. In recent years, fire detection technology based on image pattern recognition has attracted the attention of many researchers and developed rapidly. With computer technology as the core, combined with image processing technology and pattern recognition technology, it can effectively detect and identify fire flame and smoke characteristics, gather people in the market, and play an important role in fire alarm in office areas and production workshops of enterprises and institutions. This paper analyzes the difficulties of smoke and flame pattern recognition, and uses kinematics detection method, feature ex-traction, convolutional neural network and other methods to solve the shortcomings of the traditional method of indoor smoke and flame recognition which is not accurate. The result shows that the accuracy of the scheme can reach 93%.

References

[1]  孙继平, 孙雁宇, 范伟强. 基于可见光和红外图像的矿井外因火灾识别方法[J]. 工矿自动化, 2019, 4(5): 1-6.
[2]  冯丽琦, 赵亚琴, 孙一超, 龚云荷. 一种基于多尺度局部纹理特征和CART决策树的野外火灾火焰图像识别算法[J]. 计算机应用与软件, 2019(5): 194-198.
[3]  汪乐章, 林娴, 唐伊文, 张国平. 基于树莓派与计算机视觉的家庭火灾报警系统的设计与研究[J]. 电子测量技术, 2019, 42(8): 83-87.
[4]  刘剑慧. 智能识别在隧道火警上的应用[J]. 电子技术与软件工程, 2019(7): 144.
[5]  刘小虎, 欧阳继能, 卜乐平. 基于改进梯度边缘特征的早期火焰识别方法[J]. 消防科学与技术, 2019, 38(2): 250-252.
[6]  黎传琛, 白勇, 陈益民. 基于迁移学习的火焰图像识别技术研究[J]. 高技术通讯, 2019, 29(3): 274-282
[7]  刘建浩, 娄春, 冯涛, 王龙飞, 兰勇. 基于辐射图像处理的玻璃窑炉火焰特征监测研究[J]. 工业炉, 2019, 41(1): 15-18.
[8]  Jones, V.C., Kennedy, R.D., Welding, K., Gielen, A.C. and Frattaroli, S. (2019) The Prevalence of Fire and CO Safety Amenities in Airbnb Venues That Permit Smoking—Findings from 17 Countries. Preventive Medicine, 123, 8-11. https://doi.org/10.1016/j.ypmed.2019.02.021
[9]  Ronchi, E., Corbetta, A., Galea, E.R., Kinateder, M., Kuligowski, E., McGrath, D., Pel, A., Shiban, Y., Thompson, P. and Toschi, F. (2019) New Approaches to Evacuation Modeling for Fire Safety Engineering Applications. Fire Safety Journal, 106, 197-209.
https://doi.org/10.1016/j.firesaf.2019.05.002
[10]  Van Coile, R., Jomaas, G. and Bisby, L. (2019) Defining ALARP for Fire Safety Engineering Design via the Life Quality Index. Fire Safety Journal, 107, 1-14.
https://doi.org/10.1016/j.firesaf.2019.04.015
[11]  朱永红, 杨建. 基于深度学习对陶瓷梭式窑火焰图像识别[J]. 西部皮革, 2018, 40(22): 152-153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133