全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

赣南地区寒武纪沉积岩地球化学特征及其地质意义
The Geochemical Characteristics and Their Geological Significance of Sedimentary Rocks from Cambrian in Gannan Area

DOI: 10.12677/AG.2019.96060, PP. 557-570

Keywords: 寒武纪沉积岩,地球化学,物源区,构造背景,赣南地区
Cambrian Sedimentary Rocks
, Geochemistry, Provenance, Tectonic Setting, Gannan Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

赣南地区是华南东段的重要组成部分,寒武纪时期沉积了一套巨厚的复理石建造,它们都具有高SiO2(66.07%~83.85%),相对较高的Al2O3(8.81%~22.56%)、K2O(1.27%~6.72%)和TFeO+MgO(2.17%~9.18%)含量,相对较低的Na2O和CaO含量。微量元素和稀土元素显示相容元素和轻稀土元素相对富集,与典型上地壳元素特征相似。稀土元素球粒陨石标准化分布图显示稀土元素具有明显右倾性,具有明显的Eu负异常和弱Ce负异常,与PASS和上地壳特征相似。岩石地球化学特征结合寒武纪碎屑锆石年代学和Hf同位素特征显示研究区物源主要来自华夏地块南部上地壳长英质源区,少量基性火山岩区和古老地壳再循环的产物。研究区寒武纪时沉积物源没有发生明显变化。研究区早古生代沉积构造背景为被动大陆边缘。
Gannan area is an important part of the eastern part of South China. During the Cambrian, a thick set of flysch formation was deposited. The geochemical characteristics of the sedimentary rocks indicate that they all have high SiO2 (66.07~83.85 wt%), relatively high Al2O3 (8.81~22.56 wt%), K2O (1.27~6.72 wt%) and TFeO + MgO (2.17~9.18 wt%) content, relatively low Na2O and CaO content. Trace elements and rare earth elements show relatively rich enrichment of compatible elements and light rare earth elements, similar to those of typical upper crust elements. The normalized distribution of rare earth element chondrite shows that the rare earth elements have obvious right-tilt property, and have obvious Eu negative anomaly and weak Ce negative anomaly, similar to PASS and upper crust. The geochemical characteristics of sedimentary rocks combined with the zircon geochronology and Hf isotope characteristics in the study area indicate that the provenance is mainly from the upper crust of southern part of the Cathaysia block, a small amount of basic volcanic rock areas and ancient crust recirculation. The provenance of the study area did not change significantly in Cambrian. The tectonic setting of the Early Paleozoic is a passive continental marginal environment.

References

[1]  Li, X.H. (1997) Timing of the Cathaysia Block Formation: Constraints from SHRIMP U-Pb Zircon Geochronology. Episodes, 20, 188-192.
[2]  甘晓春, 李惠民, 孙大中, 等. 浙西南早元古代花岗质岩石的年代[J]. 矿物岩石学杂志, 1995, 14(1): 1-8.
[3]  舒良树, 卢华复, 贾东, 等. 华南武夷山早古生代构造事件的40Ar/39Ar同位素年龄研究[J]. 南京大学学报(自然科学), 1999, 35(6): 668-674.
[4]  Li, X.H., Li, W.H., Li, Z.X., et al. (2009) Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174, 117-128.
https://doi.org/10.1016/j.precamres.2009.07.004
[5]  郭令智, 施央申, 马瑞士, 等. 中国东南部地体构造的研究[J]. 南京大学学报(自然科学), 1984, 20(1): 732-739.
[6]  水涛. 中国东南边缘大陆古基底构造演化[J]. 科技通报, 1987, 3(5): 32-34.
[7]  许靖华, 孙枢, 李继亮. 是华南造山带而不是华南地台[J]. 中国科学(B辑), 1987(17): 1107-1115.
[8]  刘宝珺, 许效松. 中国南方岩相古地理图集[M]. 北京: 科学出版社, 1994.
[9]  杨树峰, 陈汉林, 武光海, 等. 闽北早古生代岛弧火山岩的发现及其大地构造意义[J]. 地质科学, 1995, 30(2): 105-116.
[10]  殷鸿福, 吴顺宝, 杜远生, 等. 华南是特提斯多岛洋体系的一部分[J]. 地球科学, 1999, 24(1): 1-12.
[11]  尹福光, 许效松, 万方, 等. 华南地区加里东期前陆盆地演化过程中的沉积响应[J]. 地球学报, 2001, 22(5): 425-428.
[12]  陈洪德, 侯明才, 许效松, 等. 加里东期华南的盆地演化与层序格架[J]. 成都理工大学学报(自然科学版), 2006, 33(1): 1-8.
[13]  Li, Z.X., Li X.H. and Wartho, J.A. (2010) Magmatic and Metamorphic Events during the Early Paleozic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constrains and P-T Conditions. Geological Society of America Bulletin, 122, 772-793.
[14]  吉磊. 赣西南早古生代砂岩的化学成分及其大地构造意义[J]. 沉积学报, 1993, 11(3): 25-30.
[15]  舒良树. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 2006, 12(4): 418-431.
[16]  张芳荣, 舒良树, 王德滋, 等. 华南东段加里东期花岗岩类形成构造背景经探讨[J]. 地学前缘, 2009, 16(1): 248-260.
[17]  戎嘉余, 詹仁斌, 许红根, 等. 华夏古陆于奥陶–志留纪之交的扩展证据和机制的探讨[J]. 中国科学, 2010, 40(1): 1-17.
[18]  舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053.
[19]  杜晓东, 邹和平, 苏章歆, 等. 广西大瑶山–大明山地区寒武纪砂岩–泥岩的地球化学特征及沉积–构造环境分析[J]. 中国地质, 2013, 40(4): 1112-1128.
[20]  梁薇, 牟传龙, 郑斌嵩, 等. 湘西花垣排碧寒武系混积岩的沉积地球化学特征及陆源碎屑物的物源属性[J]. 矿物岩石地球化学通报, 2018, 37(4): 760-769.
[21]  Bhatia, M.R. (1983) Plate Tectonics and Geological Composition of Sandstones. The Journal of Geology, 91, 611-627.
https://doi.org/10.1086/628815
[22]  Taylor, S.R. and Mclennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
[23]  Roser, B.P. and Korsch, R.J. (1986) Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Geology, 94, 635-650.
https://doi.org/10.1086/629071
[24]  Gu, X.X. (1994) Geochemical Characteristics of the Triassic Tethysturbidites in the Northwestern Sichuan, China: Implications for Provenance and Interpretation of Tectonic Setting. Geochimica et Cosmochimica Acta, 58, 4615-4631.
https://doi.org/10.1016/0016-7037(94)90195-3
[25]  Xiang, L. and Shu, L.S. (2010) Pre-Devonian Tectonic Evolution of the Eastern South China Block: Geochronological Evidence from Detrital Zircons. Science China Earth Sciences, 53, 1427-1444.
https://doi.org/10.1007/s11430-010-4061-5
[26]  徐夕生. 华南花岗岩–火山岩成因研究的几个问题[J]. 高校地质学报, 2008, 14(3): 283-294.
[27]  李献华, 王选策, 李武显, 等. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷[J]. 地球化学, 2008, 37(4): 382-398.
[28]  张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10): 1553-1582.
[29]  毛建仁, 厉子龙, 叶海敏. 华南中生代构造–岩浆活动研究: 现状与前景[J]. 中国科学: 地球科学, 2014, 44(12): 2593-2617.
[30]  徐文坦, 陆丽娜, 马虎超, 等. 赣南地区寒武系牛角河组碎屑锆石U-Pb年龄和Hf同位素特征及其地质意义[J]. 地质与勘探, 2019, 55(2): 542-561.
[31]  高山. 中国东部地壳的结构和组成[J]. 中国科学(D辑), 1999, 29(3): 204-213.
[32]  Blatt, H., Middleton, G.V. and Murray, R. (1980) Origin of Sedimentary Rocks. Prentice-Hall, Englewood Cliffs, ?NJ.
[33]  Maynard, J.B., Valloni, R. and Yu, H. (1982) Composition of Modern Deep Sea Sands from Arc-Related Basins. Geological Society, London, Special Publications, 10, 551-561.
https://doi.org/10.1144/GSL.SP.1982.010.01.36
[34]  Floyd, P.A. and Leveridge, B.E. (1987) Tectonic Environment of the Devonian Gramscatho Basin, South Corwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geology Society, 144, 531-542.
https://doi.org/10.1144/gsjgs.144.4.0531
[35]  Gu, X.X., Liu, J.M., Zheng, M.H., et al. (2002) Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72, 393-407.
https://doi.org/10.1306/081601720393
[36]  Bodet, F. and Sch?rer, U. (2000) Evolution of the SE Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircons and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64, 2067-2091.
https://doi.org/10.1016/S0016-7037(00)00352-5
[37]  Iizuka, T., Hirata, T., Komiya, T., et al. (2005) U-Pb and Lu-Hf Isotope Systematics of Zircons from the Mississippi River Sand: Implications for Reworking and Growth of Continental Crust. Geology, 33, 485-488.
https://doi.org/10.1130/G21427.1
[38]  Moecher, D.P. and Samson, S.D. (2006) Differential Zircon Fertility of Source Terranes and Natural Bias in the Detrital Zircon Record: Implications for Sedimentary Provenance Analysis. Earth and Planetary Science Letters, 247, 252-266.
https://doi.org/10.1016/j.epsl.2006.04.035
[39]  Ding, J., Shi, Y.R., Alfred, K., et al. (2018) Constraints on Sedimentary Ages of the Chuanlinggou Formation in the Ming Tombs, Beijing, North China Carton: LA-ICP-MS and SHRIMP U-Pb Dating of Detrital Zircons. Acta Geochimica, 37, 257-280.
https://doi.org/10.1007/s11631-017-0211-1
[40]  Wang, L.J., Yu, J.H., O’Reilly, S.Y., et al. (2008) Grenvillian Orogeny in the Southern Cathaysia Block: Constraints from U-Pb Ages and Lu-Hf Isotopes in Zircon from Metamorphic Basement. Chinese Science Bulletin, 53, 3037-3050.
https://doi.org/10.1007/s11434-008-0262-0
[41]  邹和平, 杜晓东, 劳妙姬, 等. 广西大明山地块寒武系碎屑锆石U-Pb年龄及其构造意义[J]. 地质学报, 2014, 88(10): 1800-1819.
[42]  张雄, 曾佐勋, 刘伟, 等. 湘南–桂东北地区寒武–奥陶纪沉积岩碎屑锆石U-Pb年代学特征及其地质意义[J]. 中国地质, 2016, 43(1): 153-173.
[43]  Greentree, M.R. and Li, Z.X. (2008) The Oldest Known Rocks in Southwestern China: SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33, 289-302.
https://doi.org/10.1016/j.jseaes.2008.01.001
[44]  王鹏鸣, 于津海, 孙涛, 等. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义[J]. 岩石学报, 2012, 28(12): 3841-3857.
[45]  Wang, X.L., Yu, J.H., Shu, X.J., et al. (2013) U-Pb Geochronology of Detrital Zircons from the Para-Metamorphic Rocks of the Zhoutan Group, Central Jiangxi Province. Acta Petrologica Sinica, 29, 801-811.
[46]  柏道远, 周 亮, 王先辉, 等. 湘东南南华系——寒武系砂岩地球化学特征及对华南新元古代–早古生代构造背景的制约[J]. 地质学报, 2007, 81(6): 755-771.
[47]  王剑, 刘宝珺, 潘桂棠. 华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏[J]. 矿物岩石, 2001, 21(3): 135-145.
[48]  沈渭州, 舒良树, 向磊, 等. 江西井冈山地区造弧声带沉积岩的地球化学特征及其对沉积环境的制约[J]. 岩石学报, 2009, 25(10): 2442-2458.
[49]  杨明桂, 祝平俊, 熊清华, 等. 新元古代–早古生代华南裂谷系的格局及其演化[J]. 地质学报, 2012, 86(9): 1367-1375.
[50]  郑宁, 刘燕学, 丁孝忠, 等. 赣西南下寒武统杂砂岩地球化学特征和沉积环境[J]. 地质通报, 2012, 31(7): 1115-1125.
[51]  杨世文, 楼法生, 杨坤光, 等. 江西南部震旦–寒武纪寻乌岩组变沉积岩地球化学特征及其构造意义[J]. 中国地质, 2016, 43(1): 349-364.
[52]  周恳恳, 牟传龙, 葛祥英, 等. 新一轮岩相古地理编图对华南重大地质问题的反映[J]. 沉积学报, 2017, 35(3): 449-459.
[53]  Bhatia, M.R. and Crook, K.A.W. (1986) Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92, 181-193.
https://doi.org/10.1007/BF00375292

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133