全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PLSR回归模型的黄土区土壤有机质高光谱反演
Inverting Soil Organic Matter from Hyperspectra in Loss Area Soil Based on PLSR Regression Model

DOI: 10.12677/HJSS.2019.73021, PP. 171-180

Keywords: 高光谱,土壤有机碳,特征谱段,多元逐步回归,偏最小二乘回归
Hyperspectral
, Soil Organic Carbon, Characteristic Spectral Segment, Multiple Stepwise Regression, Partial Least Squares Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用ASD FieldSpec Pro高光谱仪在室内条件下测定了风干土壤样品的可见–近红外光谱,分析了不同土壤深度以及不同植被覆盖下土壤光谱反射率曲线形状变化和土壤有机质含量的变化特点,并针对黄土台塬地区的土壤光谱反射率进行一阶导数、倒数的导数、对数的导数、倒数的对数的导数和对数的倒数的导数的变换,并与土壤有机质含量进行多元逐步回归分析,偏最小二乘回归分析(PLSR),根据特征光谱段建立多元逐步回归模型以及偏最小二乘回归模型,并验证。综合分析得出,偏最小二乘法在土壤有机质含量高光谱预测研究中更具优势。
The visible-near-infrared spectra of air-dried soil samples were determined by ASD FieldSpec Pro hyperspectral spectrometer under indoor conditions. The changes of soil spectral reflectance curve shape and soil organic matter content under different soil depths and different vegetation cover were analyzed, and the loess was analyzed. The spectral reflectance of the soil in the Taihu area is transformed by the first derivative, the derivative of the reciprocal, the derivative of the logarithm, the derivative of the logarithm of the reciprocal and the derivative of the reciprocal of the logarithm, and the multivariate stepwise regression analysis with the soil organic matter content. Least Squares Regression Analysis (PLSR) was established based on the characteristic spectral segments to establish a multivariate stepwise regression model and a partial least squares regression model. The comprehensive analysis shows that the partial least squares method has more advantages in the study of soil organic matter content hyperspectral prediction.

References

[1]  Eswaran, H., Van den Berg, E., Reich, P., et al. (1995) Global Soil Carbon Resources. In: Lal, R., Kimble, J., Levine, E.R. and Stewart, B.A., Eds., Soils and Global Change, CRC Press Inc., Boca Raton, 27-43.
[2]  Jobbgy, E.G. and Jackson, R.B. (2000) The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecological Applications, 10, 423-436.
https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
[3]  Janzen, H.H. (2006) The Soil Carbon Dilemma: Shall We Hoard It or Use It? Soil Biology & Biochemistry, 38, 419-424.
https://doi.org/10.1016/j.soilbio.2005.10.008
[4]  Houghton, R.A. (2007) Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences, 35, 313-347.
https://doi.org/10.1146/annurev.earth.35.031306.140057
[5]  Stevens, A., vanWesemael, B., Vandenschrick, G., et al. (2006) Detection of Carbon Stock Change in Agricultural Soils Using Spectroscopic Techniques. Soil Science Society of America Journal, 70, 844-850.
https://doi.org/10.2136/sssaj2005.0025
[6]  Gu, L., Post, W.M. and King, A.W. (2004) Fast Labile Carbon Turnover Obscures Sensitivity of Heterotrophic Respiration from Soil to Temperature: A Model Analysis. Global Biogeochemical Cycles, 18, GB1022.
https://doi.org/10.1029/2003GB002119
[7]  Trumbore, S.E. (1997) Potential Responses of Soil Organic Carbon to Global Environmental Change. Proceeding of National Academy Sciences of the United States of America, 94, 8284-8291.
https://doi.org/10.1073/pnas.94.16.8284
[8]  Dematte, J.A.M., Campos, R.C., Alves, M.C., Fiorio, P.R. and Nanni, M.R. (2004) Visible-NIR Reflectance: A New Approach on Soil Evaluation. Geoderma, 121, 95-112.
https://doi.org/10.1016/j.geoderma.2003.09.012
[9]  Hummel, J.W., Sudduth, K.A. and Hollinger, S.E. (2001) Soil Moisture and Organic Matter Prediction of Surface and Subsurface Soils Using an NIR Soil Sensor. Computers and Electronics in Agriculture, 32, 149-165.
https://doi.org/10.1016/S0168-1699(01)00163-6
[10]  Liu, W., Baret, F., Gu, X., Tong, Q., Zheng, L. and Zhang, B. (2002) Relating Soil Surface Moisture to Reflectance. Remote Sensing of Environment, 81, 238-246.
https://doi.org/10.1016/S0034-4257(01)00347-9
[11]  Galvao, L.S. and Vitorello, I. (1998) Role of Organic Matter in Oblite-rating the Effects of Iron on Spectral Reflectance and Color of Brazilian Tropical Soils. International Journal of Remote Sensing, 19, 1969-1979.
https://doi.org/10.1080/014311698215090
[12]  Demattê, J.A.M., Sousa, A.A., Alves, M.C., Nanni, M.R., Fiorio, P.R. and Campos, R.C. (2006) Determining Soil Water Status and Other Soil Characteristics by Spectral Proximal Sensing. Geoderma, 135, 179-195.
https://doi.org/10.1016/j.geoderma.2005.12.002
[13]  彭玉魁, 张建新, 何绪生, 卢恩双. 土壤水分、有机质和总氮含量的近红外光谱分析研究[J]. 土壤学报, 1998, 35(4): 553-559.
[14]  Brown, D.J., Bricklemyer, R.S. and Miller, P.R. (2005) Validation Requirements for Diffuse Reflectance Soil Characterization Models with a Case Study of VNIR Soil C Prediction in Montana. Geoderma, 129, 251-267.
https://doi.org/10.1016/j.geoderma.2005.01.001
[15]  汪周伟, 钱淑萍. 东北主要土壤反射光谱特性[J]. 土壤通报, 1984(5): 209-211.
[16]  Gunsaulis, F.R., Kocher, M.F. and Griffis, C.L. (1991) Surface Structure Effects on Close Range Reflectance as a Function of Soil Organic Matter Content. American Society of Agricultural Engineer, 34, 641-649.
https://doi.org/10.13031/2013.31713
[17]  Al-Abbas, A.H., Swain, P.H. and Baumgarder, M.F. (1972) Relating Organic Matter and Clay Content to Multispectral Radiance of Soils. Soil Science, 114, 477-485.
https://doi.org/10.1097/00010694-197212000-00011
[18]  Glvao, L.S. and Vitorello, I. (1998) Variability of Laboratory Meas-ured Soil Lines of Soils from Southeastern Brazil. Remote Sensing of Environment, 63, 166-181.
https://doi.org/10.1016/S0034-4257(97)00135-1
[19]  Toure, S. and Tychon, B. (2004) Airborne Hyperspectral Measurements and Superficial Soil Organic Matter. The Airborne Imagine Spectroscopy Workshop, Bruges, 8 October 2004, 1-6.
[20]  曾志远. 土壤肥力的卫星遥感探测[J]. 土壤, 1987, 19(2): 72.
[21]  谢伯承, 薛绪掌, 刘伟东, 等. 基于包络线法对土壤光谱特征的提取及其分析[J]. 土壤学报, 2005, 42(1): 171.
[22]  王静, 何挺, 李玉环, 等. 基于高光谱遥感技术的土地质量信息挖掘研究[J]. 遥感学报, 2005, 9(4): 438.
[23]  郑立华, 李敏赞, 潘娈, 等. 基于近红外光谱技术的土壤参数BP神经网络预测[J]. 光谱学与光谱分析, 2008, 28(5): 1160.
[24]  贺军亮, 蒋建军, 周生路, 等. 基于吸收特征参数的有机质含量光谱估算模型研究[J]. 农机化研究, 2009, 31(3): 30.
[25]  武彦清, 张柏, 宋开山. 松嫩平原土壤有机质含量高光谱反演研究[J]. 中国科学院研究生院学报, 2011, 28(2): 188-189.
[26]  杨萍. 基于实验室高光谱反射数据的土壤成分含量估算研究[D]: [硕士学位论文]. 南京: 南京农业大学, 2007.
[27]  陈红艳. 土壤主要养分含量的高光谱估测研究[D]: [博士学位论文]. 泰安: 山东农业大学, 2012.
[28]  李曦. 基于高光谱遥感的土壤有机质预测建模研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133