全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Semiautomated Multimodal Breast Image Registration

DOI: 10.1155/2012/890830

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consideration of information from multiple modalities has been shown to have increased diagnostic power in breast imaging. As a result, new techniques such as microwave imaging continue to be developed. Interpreting these novel image modalities is a challenge, requiring comparison to established techniques such as the gold standard X-ray mammography. However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR) images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved. 1. Introduction 2D X-ray mammography is the current gold standard breast cancer screening and diagnostic imaging modality [1]. However, mammography has been shown to have low sensitivity and specificity among premenopausal women and women with dense breasts [2]. Furthermore, mammography provides limited 3D information, as only two images are obtained: one in the cranial-caudal (CC) and one in the medial-lateral oblique (MLO) direction. Finally, the breast is compressed up to 50% of its original diameter, resulting in an image with significant anatomical distortion [3]. To overcome these limitations of mammography, other modalities such as magnetic resonance (MR) and ultrasound imaging are used to assist in the diagnosis of symptomatic and high-risk patients. It has been shown that consideration of information from multiple modalities can provide diagnostic information that might be missed if only a single modality was used [2]. As a result, development of novel imaging modalities is an active area of research, as each new technique has the potential to improve diagnosis and ultimately patient outcome. Tissue sensing adaptive radar (TSAR) is an emerging microwave-based 3D breast imaging modality [4]. Currently, in the early stages of clinical trials, TSAR shows potential as a safe and inexpensive means of obtaining 3D images of the breast. However, as a new type of image, interpretation

References

[1]  Steering Committee on Clinical Practice Guidelines for the Care and Treatment of Breast Cancer, “The palpable breast lump: information and recommendations to assist decision-making when a breast lump is detected,” Canadian Medical Association Journal, vol. 158, supplement 3, p. S3, 1998.
[2]  M. Kriege, C. T.M. Brekelmans, C. Boetes et al., “Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition,” The New England Journal of Medicine, vol. 351, no. 5, pp. 427–437, 2004.
[3]  D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The Physics of Diagnostic Imaging, Oxford University Press, Oxford, UK, 2006.
[4]  T. C. Williams, E. C. Fear, and D. T. Westwick, “Tissue sensing adaptive Radar for breast cancer detection-investigations of an improved skin-sensing method,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1308–1313, 2006.
[5]  W. R. Crum, T. Hartkens, and D. L. G. Hill, “Non-rigid image registration: theory and practice,” British Journal of Radiology, vol. 77, supplement 2, pp. S140–S153, 2004.
[6]  Y. Guo, R. Sivaramakrishna, C.-C. Lu, J. S. Suri, and S. Laxminarayan, “Breast image registration techniques: a survey,” Medical and Biological Engineering and Computing, vol. 44, no. 1-2, pp. 15–26, 2006.
[7]  C. Behrenbruch, K. Marias, P. A. Armitage et al., “Fusion of contrast-enhanced breast MR and mammographic imaging data,” The British Journal of Radiology, vol. 7, no. 3, pp. 311–340, 2003.
[8]  R. Martí, R. Zwiggelaar, C. Rubin, and E. Denton, “Two-dimensional-three-dimensional correspondence in mammography,” Cybernetics and Systems, vol. 35, no. 1, pp. 85–105, 2004.
[9]  N. Ruiter, R. Stotzka, T. Müller, H. Gemmeke, J. Reichenbach, and W. Kaiser, “Model-based registration of X-ray mammograms and MR images of the female breast,” IEEE Transactions on Nuclear Science, vol. 53, no. 1, pp. 204–211, 2006.
[10]  T. Mertzanidou, J. Hipwell, M. Cardoso, C. Tanner, S. Ourselin, and D. Hawkes, “X-ray mammography MRI registration using a volume-preserving affine transformation and an EM-MRF for breast tissue classification,” in Digital Mammography, J. Martí, A. Oliver, J. Freixenet, and R. Martí, Eds., vol. 6136 of Lecture Notes in Computer Science, pp. 23–30, Springer, Berlin, Germany, 2010.
[11]  J. K. Udupa and S. Samarasekera, “Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation,” Graphical Models and Image Processing, vol. 58, no. 3, pp. 246–261, 1996.
[12]  M. Davis, A. Khotanzad, D. Flamig, and S. Harms, “A physics-based coordinate transformation for 3-D image matching,” IEEE Transactions on Medical Imaging, vol. 16, no. 3, pp. 317–328, 1997.
[13]  D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, “PET-CT image registration in the chest using free-form deformations,” IEEE Transactions on Medical Imaging, vol. 22, no. 1, pp. 120–128, 2003.
[14]  K. Lange, Optimization, Springer, Berlin, Germany, 2004.
[15]  F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 187–198, 1996.
[16]  M. Kuhlmann, E. C. Fear, A. Ramirez-Serrano, and S. Federico, “A coupled Eulerian-Lagrangian mechanical model of the human breast,” in Proceedings of the 11th Annual Alberta Biomedical Engineering Conference, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133