全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚多巴胺/海藻酸钠(SA-PDA)凝胶球的制备及其对水中Cu2+的吸附研究
Preparation of Polydopamine/Sodium Alginate (SA-PDA) Gel Ball and Its Adsorption of Cu2+ in Water

DOI: 10.12677/AEP.2019.93062, PP. 449-457

Keywords: 海藻酸钠,聚多巴胺,吸附,Cu2+
Alginate
, Poly-Dopamine, Adsorption, Cu2+

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究制备了聚多巴胺/海藻酸钠(SA-PDA)凝胶球,用以研究其在水环境中对Cu2+的吸附影响,分别考察了pH、吸附时间和离子强度对Cu2+的吸附效果。对样品进行了傅立叶变换红外线光谱(FTIR)测试和扫描电子显微镜(SEM)的表征观察。研究显示,实验最佳的吸附条件为:pH值为6,吸附平衡时间为1600 min。SA-PDA在同等实验条件下的吸附效果明显优于PDA。此过程更符合准二级动力学方程,表明该吸附速率是由化学反应速率控制。通过Langmuir和Freundlich吸附等温式拟合,计算出SA-PDA凝胶球对水中Cu2+的最大吸附量为116.14 mg/g,吸附行为单分子层吸附,显著高于相同条件下单纯PDA对Cu2+约23.78 mg/g的吸附量。
The poly-dopamine/sodium alginate gel ball was prepared for studying the adsorption efficiency of Cu2+ in water environment. It was observed that the adsorption process could be affected by pH, adsorption time and ionic strength. The characterization of the sample was conducted with Fourier Transform infrared spectroscopy (FTIR) test and scanning electron microscope (SEM) test, showing the best adsorption condition of the experiment: pH = 6, adsorption equilibrium time 1600 min. SA-PDA had a better adsorption efficiency than PDA under the same experiment condition. This process could be fitted much better with the pseudo-second-order reaction kinetics than that with the pseudo-first order, suggesting that the adsorption rate was dominated by chemical reaction. According to the R2 value of fitted Langmuir and Freundlich model, the monolayer adsorption was investigated and the maximum adsorption capacity of Cu2+ was 116.14 mg/g by SA-PDA, remarkably higher than that by the simple PDA (23.78 mg/g).

References

[1]  李新颖, Francis Ruzagiliza Innocent, 陈泉源, 薛罡. 沉淀法处理含铜废水及其沉淀产物的表征[J]. 化工环保, 2011, 31(4): 298-303.
[2]  刘冰扬, 赵建民. 离子交换法处理含铜废水的实验研究[J]. 南京理工大学学报, 1995, 19(2): 184-188.
[3]  刘利民, 曾立华, 肖国光. 液膜萃取法处理含铜废水的研究[J]. 矿冶工程, 2009, 29(5): 86-89.
[4]  张剑波, 王维敬, 祝乐. 离子交换树脂对有机废水中铜离子的吸附[J]. 水处理技术, 2001, 27(1): 29-32.
[5]  朱一民, 沈岩柏, 魏德洲. 海藻酸钠吸附铜离子的研究[J]. 东北大学学报, 2003, 24(6): 589-592.
[6]  洪惠, 陈浩传, 姬海燕, 范晓丹. 活性炭对重金属离子的吸附研究[J]. 天津化工, 2013, 27(2): 1-3+7.
[7]  李红兵. 海藻酸钠理化性质研究和特种品种制备[D]: [博士学位论文]. 天津: 天津大学, 2005.
[8]  李晓燕, 徐强, 冯瑞雪, 张升晓, 罗浩, 韩富富. 基于聚合多巴胺的磁性碳材料的制备及其对甲基绿的吸附[J]. 环境科学学报, 2016, 36(11): 3986-3993.
[9]  熊诚. 海藻酸钠的疏水改性及其在药物控释中的应用[D]: [硕士学位论文]. 无锡: 江南大学, 2008.
[10]  乔丽英, 姚艳, 王勇, 赖宁, 王维朗. 纯镁表面聚多巴胺膜的制备及表征[J]. 华南理工大学学报(自然科学版), 2018, 46(7): 16-23.
[11]  韩睿. 聚多巴胺基功能材料的制备与研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2013.
[12]  Sari, A., Tuzen, M., Citak, D., et al. (2007) Equilibrium, Kinetic and Thermodynamic Studies of Adsorption of Pb (II) from Aqueous Solution onto Turkish Kaolinite Clay. Journal of Hazardous Materials, 149, 283-291.
https://doi.org/10.1016/j.jhazmat.2007.03.078
[13]  李鹏莉, 于树玲, 石家华. 聚多巴胺改性碳纳米管对Pb~(2+)的吸附性能[J]. 河南大学学报(自然科学版), 2014, 44(4): 416-420.
[14]  骆欣, 杨怡心, 徐东耀, 阮金钊. 铝盐改性活性炭对水中Cr(VI)的吸附[J]. 工业安全与环保, 2019, 45(2): 69-72+82.
[15]  Dural, M.U., Cavas, L., Papageorgiou, S.K. and Katsaros, F.K. (2010) Methylene Blue Adsorption on Activated Carbon Prepared from Posidonia oceanica (L.) Dead Leaves: Kinetics and Equilibrium Studies. Chemical Engineering Journal, 168, 77-85.
https://doi.org/10.1016/j.cej.2010.12.038
[16]  Langmuir, I. (1916) The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221-2295.
https://doi.org/10.1021/ja02268a002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133