全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

底栖生物扰动对河口沉积物中甲基汞分布及生物可利用性的影响
Influence of Bioturbation by Benthic Organisms on the Distribution and Bioavailability of Methylmercury in Estuary Sediment

DOI: 10.12677/AEP.2019.93061, PP. 439-448

Keywords: 生物扰动,甲基汞,沉积物,生物可利用性
Bioturbation
, Methylmercury, Sediment, Bioavailability

Full-Text   Cite this paper   Add to My Lib

Abstract:

汞是全球广泛分布的有毒重金属。沉积物是汞在水生生态系统中的重要“源”和“汇”,但生物扰动等因素可能通过改变沉积物的理化性质,影响汞的分布和生物可利用性。本研究选取了底栖生物沙蚕作为研究对象,探究了生物扰动对于甲基汞在沉积物中的分布和生物可利用性的影响,并探讨了该影响的机理。研究发现,1) 沙蚕对甲基汞有较强的吸收能力;2) 暴露过程中生物周边沉积物汞含量逐渐升高,并最终高于非周边沉积物,但沙蚕对汞的吸收速率放缓;3) 生物周边沉积物中,有机质含量显著提高,这可能与沙蚕分泌物、掘穴与摄食等活动有关;4) 利用牛血清蛋白对沉积物中汞的生物可利用性评估发现,沉积物生物可利用性随暴露时间降低,这与沙蚕对汞吸收速率的放缓一致。我们推测沙蚕扰动提高了沉积物中有机质含量,增加了周边沉积物与甲基汞结合的能力,从而使得汞的生物可利用性有所下降。
Mercury (Hg) is a toxic heavy metal which widely distributed globally. In aquatic ecosystems, sediment acts as important sink and source for Hg, and its distribution and bioavailability can be affected by many factors, including bioturbation by benthic organisms which can modify the phys-icochemical properties of sediment. In the present study, we chose nereid (Neanthes japonica) as the experimental animal to investigate the effects of bioturbation on methylmercury distribution and bioavailability in estuary sediment, and explored the underlying mechanism. We found that 1) Methylmercury was significantly bioaccumulated by Nereid during exposure. 2) Methylmercury in bioturbated sediment increased gradually during exposure and finally exceeded the methylmercury concentration in non-bioturbated sediment, however, the uptake rate decreased with exposure time. 3) Bioturbated sediment had higher level of organic matter, which might be related with the living activities of benthic organisms, including mucus secretion, burrowing and feeding activities. 4) The bioavailability assessment using Bovine Serum Albumin (BSA) extraction method revealed that the bioavailability of methylmercury in sediment decreased with exposure time, which was consistent with the decreased uptake rate by Nereid. We suggest that bioturbation by Nereid increased the organic content in sediment, which enhanced the binding capacity with methylmercury in the surrounding sediment, thus reducing the bioavailability of methylmercury.

References

[1]  Clarkson, T.W., Hamada, R. and Amin-Zaki, L. (1984) Mercury. In: Nriagu, J.O., Ed., Changing Metal Cycles and Human Health, Springer-Verlag, Berlin, 285-309.
https://doi.org/10.1007/978-3-642-69314-4_17
[2]  Balcom, P.H., Hammerschmidt, C.R., Fitzgerald, W.F., Lamborg, C.H. and O’Connor, J.S. (2008) Seasonal Distributions and Cycling of Mercury and Methylmercury in the Waters of New York/New Jersey Harbor Estuary. Marine Chemistry, 109, 1-17.
https://doi.org/10.1016/j.marchem.2007.09.005
[3]  Kim, D., Wang, Q., Sorial, G.A., Dionysiou, D.D. and Timberlake, D. (2004) A Model Approach for Evaluating Effects of Remedial Actions on Mercury Speciation and Transport in a Lake System. Science of the Total Environment, 327, 1-15.
https://doi.org/10.1016/j.scitotenv.2003.09.011
[4]  Fairbrother, A., Wenstel, R., Sappington, K. and Wood, W. (2007) Framework for Metals Risk Assessment. Ecotoxicology and Environmental Safety, 68, 145-227.
https://doi.org/10.1016/j.ecoenv.2007.03.015
[5]  Fran?ois, F., Gerino, M., Stora, G., Durbec, J.P. and Poggiale, J.C. (2002) Functional Approach to Sediment Reworking by Gallery-Forming Macrobenthic Organisms: Modeling and Application with the Polychaete Nereis diversicolor. Marine Ecology Progress Series, 229, 127-136.
https://doi.org/10.3354/meps229127
[6]  Sizmur, T., Canário, J., Edmonds, S., Godfrey, A. and O’Driscoll, N.J. (2013) The Polychaete Worm Nereis diversicolor Increases Mercury Lability and Methylation in Intertidal Mudflats. Environmental Toxicology and Chemistry, 32, 1888-1895.
https://doi.org/10.1002/etc.2264
[7]  Gilbert, F., Stora, G. and Bonin, P. (1998) Influence of Bioturbation on Denitrification Activity in Mediterranean Coastal Sediments: An in Situ Experimental Approach. Marine Ecology Progress Series, 163, 99-107.
https://doi.org/10.3354/meps163099
[8]  Caetano, M., Madureira, M.J. and Vale, C. (2003) Metal Remobilisation during Resuspension of Anoxic Contaminated Sediment: Short-Term Laboratory Study. Water, Air, and Soil Pollution, 143, 23-40.
https://doi.org/10.1023/A:1022877120813
[9]  Papaspyrou, S., Gregersen, T., Kristensen, E., Christensen, B. and Cox, R.P. (2006) Microbial Reaction Rates and Bacterial Communities in Sediment Surrounding Burrows of Two Nereidid Polychaetes (Nereisdiversicolor and N. virens). Marine Biology, 148, 541-550.
https://doi.org/10.1007/s00227-005-0105-3
[10]  Muhaya, B.B.M., Leermakers, M. and Baeyens, W. (1997) Total Mercury and Methylmercury in Sediments and in the Polychaete Nereis diversicolor at Groot Buitenschoor (Scheldt Estuary, Belgium). Water, Air, and Soil Pollution, 94, 109-123.
https://doi.org/10.1007/BF02407097
[11]  Mason, R.P. and Lawrence, A.L. (1999) Concentration, Distribution, and Bioavailability of Mercury and Methylmercury in Sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry, 18, 2438-2447.
https://doi.org/10.1002/etc.5620181109
[12]  Chen, C.Y., Dionne, M., Mayes, B.M., Ward, D.M., Sturup, S. and Jackson, B.P. (2009) Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine. Environmental Science & Technology, 43, 1804-1810.
https://doi.org/10.1021/es8017122
[13]  Steiner, Z., Lazar, B., Levi, S., Tsroya, S., Pelled, O., Bookman, R. and Erez, J. (2016) The Effect of Bioturbation in Pelagic Sediments: Lessons from Radioactive Tracers and Planktonic Foraminifera in the Gulf of Aqaba, Red Sea. Geochimica et Cosmochimica Acta, 194, 139-152.
https://doi.org/10.1016/j.gca.2016.08.037
[14]  Benoit, J.M., Shull, D.H., Harvey, R.M. and Beal, S.A. (2009) Effect of Bioirrigation on Sediment-Water Exchange of Methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology, 43, 3669-3674.
https://doi.org/10.1021/es803552q
[15]  Gagnon, C., Pelletier, é. and Mucci, A. (1997) Behaviour of An-thropogenic Mercury in Coastal Marine Sediments. Marine Chemistry, 59, 159-176.
https://doi.org/10.1016/S0304-4203(97)00071-6
[16]  Hammerschmidt, C.R. and Fitzgerald, W.F. (2008) Sediment-Water Ex-change of Methylmercury Determined from Shipboard Benthic Flux Chambers. Marine Chemistry, 109, 86-97.
https://doi.org/10.1016/j.marchem.2007.12.006
[17]  Hammerschmidt, C.R., Fitzgerald, W.F., Lamborg, C.H., Balcom, P.H. and Visscher, P.T. (2004) Biogeochemistry of Methylmercury in Sediments of Long Island Sound. Marine Chemistry, 90, 31-52.
https://doi.org/10.1016/j.marchem.2004.02.024
[18]  Beam, J.P., Scott, J.J., McAllister, S.M., Chan, C.S., McManus, J., Meysman, F.J. and Emerson, D. (2018) Biological Rejuvenation of Iron Oxides in Bioturbated Marine Sediments. The ISME Journal, 12, 1389-1394.
https://doi.org/10.1038/s41396-017-0032-6
[19]  Voparil, I.M. and Mayer, L.M. (2004) Commercially Available Chemicals that Mimic a Deposit Feeder’s (Arenicola marina) Digestive Solubilization of Lipids. Environmental Science & Technology, 38, 4334-4339.
https://doi.org/10.1021/es049506y
[20]  Zhong, H. and Wang, W.-X. (2008) Methylmercury Extraction from Artificial Sediments by the Gut Juice of the Sipunculan, Sipunculus nudus. Environmental Toxicology and Chemistry, 27, 138-145.
https://doi.org/10.1897/07-049.1
[21]  Zhong, H. and Wang, W.-X. (2009) Inorganic Mercury Binding with Different Sulfur Species in Anoxic Sediments and Their Gut Juice Extractions. Environmental Toxicology and Chemistry, 28, 1851-1857.
https://doi.org/10.1897/08-539.1
[22]  Zhong, H. and Wang, W.-X. (2006) Sediment-Bound Inorganic Hg Extraction Mechanisms in the Gut Fluids of Marine Deposit Feeders. Environmental Science & Technology, 40, 6181-6186.
https://doi.org/10.1021/es061195z
[23]  He, T., Lu, J., Yang, F. and Feng, X. (2007) Horizontal and Vertical Variability of Mercury Species in Pore Water and Sediments in Small Lakes in Ontario. Science of the Total Environment, 386, 53-64.
https://doi.org/10.1016/j.scitotenv.2007.07.022
[24]  Lambertsson, L. and Nilsson, M. (2006) Organic Material: The Primary Control on Mercury Methylation and Ambient Methyl Mercury Concentrations in Estuarine Sediments. Environmental Science & Technology, 40, 1822-1829.
https://doi.org/10.1021/es051785h
[25]  Gray, J.E. and Hines, M.E. (2009) Biogeochemical Mercury Methylation Influenced by Reservoir Eutrophication, Salmon Falls Creek Reservoir, Idaho, USA. Chemical Geology, 258, 157-167.
https://doi.org/10.1016/j.chemgeo.2008.09.023
[26]  Duchêne, J.C. and Rosenberg, R. (2001) Marine Benthic Faunal Activity Patterns on a Sediment Surface Assessed by Video Numerical Tracking. Marine Ecology Progress Series, 223, 113-119.
https://doi.org/10.3354/meps223113
[27]  Petrash, D.A., Lalonde, S.V., Gingras, M.K. and Konhauser, K.O. (2011) A Surrogate Approach to Studying the Chemical Reactivity of Burrow Mucous Linings in Marine Sediments. Palaios, 26, 594-600.
https://doi.org/10.2110/palo.2010.p10-140r
[28]  Ravichandran, M. (2004) Interactions between Mercury and Dissolved Organic Matter—A Review. Chemosphere, 55, 319-331.
https://doi.org/10.1016/j.chemosphere.2003.11.011
[29]  Turner, A. (2000) Trace Metal Contamination in Sediments from UK Estuaries: An Empirical Evaluation of the Role of Hydrous Iron and Manganese Oxides. Estuarine, Coastal and Shelf Science, 50, 355-371.
https://doi.org/10.1006/ecss.1999.0573
[30]  Lawrence, A.L. and Mason, R.P. (2001) Factors Controlling the Bioaccumulation of Mercury and Methylmercury by the Estuarine Amphipod Leptocheirus plumulosus. Environmental Pollution, 111, 217-231.
https://doi.org/10.1016/S0269-7491(00)00072-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133