全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARIMA模型的上海3A级及以上景区客流量差异分析及其预测研究
Analysis and Prediction of Passenger Flow Differences in Shanghai 3A Scenic Spots and Above Based on ARIMA Model

DOI: 10.12677/SA.2019.83061, PP. 537-552

Keywords: 景区客流量,上海旅游景区,K-Means聚类分析,时间序列分析,ARIMA模型
Passenger Flow in Scenic Spots
, Shanghai Tourist Scenic Spot, K-Means Cluster Analysis, Time Series Analysis, ARIMA Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

近些年,上海的都市旅游发展迅速,各大景区客流量也出现日益增多的情况,为了进一步了解上海景区在节假日和工作日等不同时段的客流变化特征,本项目通过上海市旅游局官方微信公众号“乐游上海”统计了2018年3月15日至2018年10月15日上海市35个3A级及以上景区每日10:00和15:00客流量,在此基础上,通过描述统计分析得出上海旅游景区每日15:00客流量普遍高于10:00客流量。通过K-means聚类分析发现几个热门景点占据了上海每日大部分客流量,而大部分3A及4A景区客流量仍处于较低水平。通过对不同类型的景区客流量进行时间序列分析,建立ARIMA模型,得出上海市3A及以上景区客流量存在不同的波动性,并且在时间上存在相互影响。本项目通过描述性统计分析,K-means聚类分析及时间序列建模的方法,图形与模型并存,直观科学地分析了客流量的分布情况并预测了景区客流量的未来趋势,希望能对上海旅游业发展提供帮助。
In recent years, with the rapid development of urban tourism in Shanghai, the passenger flow of major scenic spots is increasing day by day. In order to further understand the changing characteristics of the passenger flow of Shanghai scenic spots in different periods, such as holidays and working days, this program counts 35 scenic spots of 3A level and above in Shanghai from March 15, 2018 to October 15, 2018 through the official Wechat public number of Shanghai Tourism Bureau, “Happy Tour Shanghai”. The daily passenger flow is 10:00 and 15:00. On the basis, through descriptive statistical analysis, it is concluded that the daily passenger flow at 15:00 is generally higher than that at 10:00 in Shanghai tourist attraction. K-means cluster shows that several popular scenic spots occupy most of the daily passenger flow in Shanghai, while most of the 3A and 4A scenic spots are still at a low level. Through time series analysis of passenger flow in different scenic spots, ARIMA model is established. It is concluded that there are different fluctuations of passenger flow in scenic spots 3A and above in Shanghai, and there are mutual influences in time. Through descriptive statistical analysis, K-means clustering analysis and time series modeling, graphics and models coexists; this project analyzed the distribution of passenger flow intuitively and scientifically, and predicted the future trend of tourist flow in scenic spots, hoping to provide help for the development of Shanghai tourism.

References

[1]  汪宇明, 赵中华. 基于上海案例的大都市旅游容量及承载力研究[J]. 中国人口?资源与环境, 2007, 17(5): 118-122.
[2]  舒锡慧, 罗茹. 上海旅游容量调查实证分析[J]. 大众文艺, 2011(24): 354-356.
[3]  刘春济, 高静. 上海市旅游景区(点)客流时空分布特征及成因分析[J]. 上海师范大学学报(自然科学版), 2006(5): 93-100.
[4]  黄筱焯. 上海都市旅游景点可容纳量研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2005.
[5]  陈珊, 申世昌. ARIMA模型对我国旅游业可持续发展的实证研究[J]. 齐齐哈尔大学学报(自然科学版), 2017, 33(2): 84-88.
[6]  刘燕玉, 龙金萍. 基于ARIMA模型的江口县旅游人数实证分析[J]. 统计与管理, 2016(6): 36-37.
[7]  赵玥. 时间序列分析方法在景点人数预测问题中的应用[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133