全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合层次聚类的海洋内波SAR图像特征自动检测
Automatic Feature Detection of Ocean Internal Wave SAR Image Based on Hierarchical Clustering

DOI: 10.12677/CSA.2019.96126, PP. 1118-1125

Keywords: SAR图像,海洋内波特征,Canny算子,层次聚类,自动检测
SAR Image
, Ocean Internal Wave Characteristics, Canny Operator, Hierarchical Clustering, Auto-matic Withdrawal

Full-Text   Cite this paper   Add to My Lib

Abstract:

海洋内波是一种典型的海洋现象,其特征检测和参数反演研究对海洋生态系统、海洋渔业、海洋工程和军事等具有重要意义。海洋内波在合成孔径雷达(SAR)图像上的明暗条纹特征,使SAR图像成为检测海洋内波特征的重要数据源。针对复杂的多簇海洋内波SAR图像,本文首先利用高斯滤波、Canny算子对SAR图像中多簇海洋内波特征进行检测,通过非内波边缘剔除、特征曲线搜索,结合层次聚类分析,进行了海洋内波特征的自动提取和多个内波波包的识别与分离。基于计算机视觉库Opencv,利用RADARSAT卫星SAR图像进行了海洋内波特征检测,检测结果表明该方法有效解决了内波特征自动检测问题,为海量SAR图像海洋内波特征参数自动反演和星上快速处理奠定了基础。
Ocean internal wave is a typical ocean phenomenon, and its characteristic detection and parameter inversion are of great significance to marine ecosystem, marine fishery, marine engineering and military affairs. The characteristics of light and dark stripes of ocean internal waves on synthetic aperture radar (SAR) images make SAR images become an important data source for detecting ocean internal wave features. In this paper, for complex multi-cluster SAR images of ocean internal waves, Gauss filter and Canny operator are used for the feature detection of multi-cluster ocean internal wave in SAR image, and automatic extraction of ocean internal wave features and identification and separation of multiple internal wave packets are realized by eliminating the edge of non-internal wave, searching the feature curve and combing the method of hierarchical clustering analysis. Based on computer vision library Opencv, ocean internal wave feature detection is carried out based on the SAR image of RADARSAT. The detecting results show that this method can effectively solve the problem of internal wave feature automatic detection, which lays a foundation for automatic inversion of ocean internal wave feature parameters and onboard fast processing of massive SAR images.

References

[1]  李海艳, 杜涛. 海洋内波SAR影像成像理论[J]. 海洋科学, 2005, 29(10): 86-89.
[2]  陈捷, 陈标, 许素芹. 一种新的SAR图像内波检测与参数估计方法[J]. 中国图象图形学报, 2018, 14(1): 40-44.
[3]  白勇峰. 一种新的层次聚类算法的研究及应用[D]: [硕士学位论文]. 兰州: 西北师范大学, 2011.
[4]  段明秀. 层次聚类算法的研究及应用[D]: [硕士学位论文]. 长沙: 中南大学, 2009.
[5]  毛星云, 冷雪飞, 等. OpenCV3编程入门[M]. 北京: 电子工业出版社, 2015.
[6]  Liu, A.K. and Hsu, M.K. (2004) Internal Wave Study in the South China Sea Using Synthetic Aperture Radar (SAR). International Journal of Remote Sensing, 25, 1261-1264.
https://doi.org/10.1080/01431160310001592148
[7]  Canny, J. (1986) A Computational Approach to Edge Detec-tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.
https://doi.org/10.1109/TPAMI.1986.4767851
[8]  陈志强, 高磊, 吴黎慧, 等. 一种优化的Canny算子边缘检测法[J]. 电子测试, 2011(6): 43-46.
[9]  徐德明, 万长林. 可抗噪声的Canny改进边缘检测算法[J]. 计算机系统应用, 2017, 26(1): 201-205.
[10]  张桂梅, 孙晓旭, 陈彬彬, 等. 结合分数阶微分和Canny算子的边缘检测[J]. 中国图象图形学报, 2018, 21(8): 1028-1038.
[11]  曾接贤. 改进的Beamlet与Canny相结合提取复杂图像线特征[J]. 中国图象图形学报, 2012, 17(7): 775-782.
[12]  刘相滨, 向坚持, 阳波. 基于八邻域边界跟踪的标号算法[J]. 计算机工程与应用, 2001, 37(23): 125-126.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133