全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器视觉的汽车置杯盒缺陷检测系统
Vehicle Cup-Holder Defect Detection System Based on Machine Vision

DOI: 10.12677/CSA.2019.96122, PP. 1085-1094

Keywords: 机器视觉,置杯盒缺陷检测,汽车零部件,图像采集,图像处理
Machine Vision
, Cup-Holder Defect Detection, Auto Parts, Image Collecting, Image Processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

现如今汽车置杯盒零部件生产中的检测环节主要依赖人工目检和具检,影响工业生产效率和质量,人工成本也较高。设计了一种基于机器视觉的汽车置杯盒缺陷检测系统,分别对光源系统、高速图像采集系统和图像处理系统的设计进行了验证,实验验证了系统的可行性。实验表明:系统检测效率高、误检率低,降低了工业生产成本,且可以长时间稳定且高速地运行。
Nowadays, the inspection of vehicle cup-holder parts mainly relies on manual inspection and fixture inspection, which affects the industrial production efficiency and quality, and the labor cost is also high. A defect detection system of vehicle cup-holder based on machine vision was designed. The design of light source system, high-speed image acquisition system and image processing system were respectively verified. The feasibility of the system was verified by experiments. Experiments show that the system has high detection efficiency and low false detection rate, which reduces the cost of industrial production and can run stably and at high speed for a long time.

References

[1]  我国汽车生产自动化系统的发展趋势[J]. 自动化博览, 2007, 24(2): 34-35.
[2]  Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L. and Legat, J.-D. (2003) A Survey on Industrial Vision Systems, Applications and Tools. Image and Vision Computing, 21, 171-188.
https://doi.org/10.1016/S0262-8856(02)00152-X
[3]  Golnabi, H. and Asadpour, A. (2007) Design and Application of Industrial Machine Vision Systems. Robotics and Computer-Integrated Manufacturing, 23, 630-637.
https://doi.org/10.1016/j.rcim.2007.02.005
[4]  刘振宇, 李中生, 冯柏润, 郭名坤, 赵雪. 机器视觉在工业生产线上的应用实现[J]. 微型机与应用, 2013, 32(17): 27-30.
[5]  Di Leo, G., Liguori, C., Pietrosanto, A. and Sommella, P. (2017) A Vision Sys-tem for the Online Quality Monitoring of Industrial Manufacturing. Optics and Lasers in Engineering, 89, 162-168.
https://doi.org/10.1016/j.optlaseng.2016.05.007
[6]  郭全民, 胡辉. 基于机器视觉的多铆钉自动检测算法研究[J]. 传感器与微系统, 2013, 32(4): 48-50+53.
[7]  陈至坤, 潘晓娣, 王福斌, 周亚罗, 刘杰. 基于Radon变换的图像轮廓提取方法研究[J]. 传感器与微系统, 2010, 29(2): 63-65+68.
[8]  李福建, 张元培. 机器视觉系统组成研究[J]. 自动化博览, 2004(2): 61-63.
[9]  田娟, 郑郁正. 模板匹配技术在图像识别中的应用[J]. 传感器与微系统, 2008, 27(1): 112-114+117.
[10]  吴晓军, 邹广华. 基于边缘几何特征的高性能模板匹配算法[J]. 仪器仪表学报, 2013, 34(7): 1462-1469.
[11]  李强, 杨涛. 形心和匹配跟踪算法的改进[J]. 光电工程, 2000, 27(2): 28-30.
[12]  Sun, J.-Q., Zhou, J., Zhang, Z. and Zhang, Y.-P. (2011) Centroid Location for Space Targets Based on Energy Accumulation. Optics and Precision Engineering, 19, 3043-3048.
[13]  Zaitoun, N.M. and Aqel, M.J. (2015) Survey on Image Segmentation Techniques. Procedia Computer Science, 65, 797-806.
https://doi.org/10.1016/j.procs.2015.09.027
[14]  杨顺辽. 数学形态学在小区域去除处理中的应用[J]. 长江大学学报(自科版), 2005, 2(10): 323-325.
[15]  周瑜, 刘俊涛, 白翔. 形状匹配方法研究与展望[J]. 自动化学报, 2012, 38(6): 889-910.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133