全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于仿射群自调整粒子滤波泊位飞机跟踪算法
Docking Aircraft Tracking Algorithm Based on Affine Group Self-Tuning Particle Filtering

DOI: 10.12677/JAST.2019.72007, PP. 57-62

Keywords: 泊位飞机,跟踪,仿射群,粒子滤波
Docking Aircraft
, Tracking, Affine Group, Particle Filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于仿射群的自调整粒子滤波算法被提出,用于跟踪机场内泊位飞机,防止飞机发生相碰。算法中主要是利用最少粒子数量找到最优状态跟踪目标,在线学习估计器来交替地调整这些粒子,根据反馈出现相似分数使得这些粒子朝着邻近的最优状态移动,当所有调整的粒子满足目标块最大相似度或者允许的最大粒子数量达到时结束。算法实现了稀少采样,能够获得更好的鲁棒性和高准确率跟踪的效果。
The algorithm based on affine group self-tuning particle filtering is proposed to track docking air-craft in airport, and to prevent the aircraft collision. The algorithm is mainly used to find the op-timal state with minimum number of particles tracking target. The online learning estimator is used to adjust these particles, the similarity score is based on the feedback, which makes the par-ticles move towards the optimal state. It comes to an end when all the particles are adjusted to meet the maximum degree of similarity or the maximum number of particles allowed. The algorithm achieves sparse sampling and obtains better robustness and high accuracy tracking results.

References

[1]  Yilmaz, A., Javed, O. and Shah, M. (2006) Object Tracking: A Survey. ACM Computing Surveys, 38, 1-45.
https://doi.org/10.1145/1177352.1177355
[2]  Nummiaroa, E.K.-M.K. and Gool, L. (2003) An Adaptive Color-Based Particle Filter. Image and Vision Computing, 21, 99-110.
https://doi.org/10.1016/S0262-8856(02)00129-4
[3]  李培华. 一种新颖的基于颜色信息的粒子滤波器跟踪算法[J]. 计算机学报, 2009, 32(12): 2455-2463.
[4]  Pocok, J., Dance, S. and Lawless, A. (2011) State Estimation Using the Particle Filter with Mode Tracking. Computer Fluids, 46, 392-397.
https://doi.org/10.1016/j.compfluid.2011.02.009
[5]  李远征, 卢朝阳, 高全学, 李静. 基于多特征融合的均值迁移粒子滤波跟踪算法[J]. 电子与信息学报, 2010, 32(2): 411-415.
[6]  郑华, 谭博, 裴承鸣. 粒子滤波算法在多传感器测量中的应用[J]. 现代电子技术, 2014, 37(1): 25-30.
[7]  Wang, J.Y., Chen, X.L. and Gao, W. (2005) Online Selection Discriminative Tracking Features Using Particle Filter. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE Press, New York, 1037-1042.
[8]  林霖. 基于几何特征的飞机部位识别跟踪算法[J]. 红外, 2007, 28(8): 131-135.
[9]  Porikli, F., Tuzel, O. and Meer, P. (2006) Covariance Tracking Using Model Update Based on Lie Algebra. Proceedings of the IEEE Computer Society Con-ference on Computer Vision and Pattern Recognition, New York, 17-22 June 2006, 728-735.
[10]  Li, M., Tan, T., Chen, W. and Huang, K. (2012) Efficient Object Tracking by Incremental Self-Tuning Particle Filtering on the Affine Group. IEEE Transactions on Image Processing, 21, 1298-1313.
https://doi.org/10.1109/TIP.2011.2169970

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133