全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于Wi-Fi的室内定位算法研究与实现
A Design and Implementation of Indoor Positioning Algorithm Based on Wi-Fi

DOI: 10.12677/HJWC.2019.93016, PP. 130-137

Keywords: 室内定位,Wi-Fi指纹,KNN算法,机器学习,神经网络
Indoor Positioning
, Wi-Fi Fingerprinting, KNN Algorithm, Machine Learning, Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现在多楼层大面积的室内环境下获得精准定位信息,以芬兰Tampere大学的公开数据集为基础,建立基于Wi-Fi位置指纹算法模型。使用自动编码器模型和神经网络模型结合训练进行主动降维和主成分提取,进而采用分类训练构建改良后的楼层分类模型。使用改良后楼层分类模型楼层分类精确率达到92%,结果优于自动编码器模型和神经网络模型;神经网络模型结合加权KNN算法实现定位精度在4米左右,算法有效性高于传统Wi-Fi指纹室内定位算法。改良后楼层分类模型结合加权KNN算法,可作为大型室内定位最佳模型。
In order to obtain accurate location information in multi-floor and large area indoor environment, based on the open data set of Tampere University in Finland, a fingerprint algorithm model based on Wi-Fi position is established. The automatic encoder model and neural network model are combined with training to extract the active reduction and principal components, and then the improved floor classification model is constructed by classification training. The accuracy rate of floor classification using the improved floor classification model is 92%, which is better than that of automatic encoder model and neural network model. The location accuracy of neural network model combined with weighted KNN algorithm is about 4 meters, and the efficiency of the algorithm is higher than that of the traditional Wi-Fi fingerprint indoor location algorithm. The improved floor classification model combined with weighted KNN algorithm can be used as the best model for large indoor positioning.

References

[1]  吴楠, 王旭东, 胡晴晴, 等. 基于多LED的高精度室内可见光定位方法[J]. 电子与信息学报, 2015, 37(3): 727-732.
[2]  周宝定, 李清泉, 毛庆洲, 等. 用户行为感知辅助的室内行人定位[J]. 武汉大学学报(信息科学版), 2014, 39(6): 719-723.
[3]  Kolodziej, K.W. and Hjelm, J. (2006) Local Positioning Systems: LBS Applications and Services. CRC Press, Boca Raton, 101-158.
https://doi.org/10.1201/9780849333491
[4]  Brunato, M. and Battiti, R. (2005) Statistical Learning Theory for Location Fingerprinting in Wireless LANs. Computer Networks, 47, 825-845.
https://doi.org/10.1016/j.comnet.2004.09.004
[5]  刘喜梅, 张超, 胡继珍. 一种复杂环境下无线传感器网络定位算法[J]. 青岛科技大学学报, 2009, 30(2): 173-175.
[6]  卢恒惠, 刘兴川, 张超, 林孝康. 基于三角形与位置指纹识别算法的WIFI定位比较[J]. 移动通信, 2010, 34(10): 72-76.
[7]  黄华晋, 秦建息. 基于三角定位算法的WIFI室内定位系统设计[J]. 广西科学院学报, 2016, 32(1): 59-61.
[8]  田家英. 基于WIFI位置指纹算法室内定位技术研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2018.
[9]  司阳, 肖秦琨, 李兴. 基于自动编码器和神经网络的人体运动识别[J]. 国外电子测量技术, 2018, 37(1): 78-84.
[10]  费扬. 基于BP神经网络的室内定位指纹算法研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133