全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

科尔希小麦叶绿体全基因组的测序及其特征分析
Sequencing and Charac-terization of the Whole Chloroplast Genome of Triticum paleocolchicum Men.

DOI: 10.12677/HJCB.2019.92004, PP. 22-31

Keywords: 科尔希小麦,叶绿体,系统进化,RNA编辑
Triticum paleocolchicum
, Chloroplast, Phylogenetic Relationship, RNA Editing

Full-Text   Cite this paper   Add to My Lib

Abstract:

科尔希小麦(Triticum paleocolchicum Men.)是一种特殊类型的四倍体小麦,作为小麦的原始类型,在普通六倍体小麦的起源、进化以及遗传改良中具有重要地位。目前,有关科尔希小麦的基因组信息及序列资源相当有限。为了丰富科尔希小麦的分子遗传信息,本研究利用Illumina Novaseq平台对科尔希小麦基因组DNA进行了测序,然后以中国春叶绿体基因组为参考,组装获得了科尔希小麦的叶绿体基因组全长序列。特征分析发现,科尔希小麦叶绿体基因组全长为136,445 bp,具有典型的高等植物叶绿体基因组环状四分体结构,由一个长度分别为79,993 bp的长单拷贝区(Large single copy, LSC)、一个12,832 bp的短单拷贝区(small single copy, SSC)和一对21,815 bp的反向重复序列(Inverted repeat, IR)构成;基因注释发现其编码了109个非冗余基因,包括76个蛋白编码基因,29个tRNA基因以及4个rRNA基因,其中19个位于IR区而具有两个拷贝;这些基因中,有16个基因具有内含子,其中ycf3含有2个内含子;进一步,对其RNA编辑位点进行了预测,发现15个基因存在RNA编辑,共预测到了35个RNA编辑位点,这些特征与其他小麦属物种的叶绿体基因组类似。最后,基于叶绿体全基因组序列构建了进化树,发现科尔希小麦与所有AABB型的小麦聚为一类,而AAGG型的提莫菲维小麦为单独一类,这与他们的亲缘关系一致。本研究丰富了科尔希小麦的序列资源,为其分子鉴定、标记开发以及系统发育的研究提供了重要数据。
Triticum paleocolchicum Men. is one of the specific tetraploid wheats, which plays a vital role in the origin, domestication and evolution of common wheat as the primitive relatives. At present, the genetic information and sequence resource of it is very limited, hindering the further genetic and evolutionary research. To enrich the genetic sequences, we sequenced and assembled the complete chloroplast (cp) genome sequence of Triticum paleocolchicum using the Illumina sequencing. The assembled cp genome is 136,445 bp in size, consisting of four parts, namely LSC (79,993 bp), SSC (12,832 bp) and two IRs (21,815 bp). Gene annotation found that it encoded 109 non-redundant genes, including 76 protein-coding genes, 29 tRNA genes and 4 rRNA genes, 19 of which were located in the IR region with two copies. Of these genes, 16 have introns, of which ycf3 contains two introns. Furthermore, the RNA editing sites of this genome were also predicted and 15 genes were found to have RNA editing sites and a total of 35 RNA editing sites were predicted, which were similar to that of other wheat relatives. Finally, an evolutionary tree was constructed based on the whole chloroplast genome sequence and it showed that Triticum paleocolchicum and other species with AABB were clustered together, while separated with Triticum timopheevii wheat (AAGG). This study enriched the sequence resources of
References

[1]  Howe, C.J., Barbrook. A.C., Koumandou, V.L., Nisbet, R.E., Symington, H.A., et al. (2003) Evolution of the Chloro-plast Genome. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 99-106.
https://doi.org/10.1098/rstb.2002.1176
[2]  Gray, M.W. (1989) The Evolutionary Origins of Organelles. Trends in Genetics, 5, 294-299.
https://doi.org/10.1016/0168-9525(89)90111-X
[3]  Jansen, R.K. and Ruhlman, T.A. (2012) Plastid Genomes of Seed Plants. In: Bock, R. and Knoop, V., Eds., Genomics of Chloroplasts and Mitochondria, Springer, Berlin, 103-126.
https://doi.org/10.1007/978-94-007-2920-9_5
[4]  Burke, S.V., Wysocki, W.P., Zuloaga, F.O., et al. (2016) Evolutionary Relationships in Panicoid Grasses Based on Plastome Phylogenomics (Panicoideae; Poaceae). BMC Plant Biology, 16, 140.
https://doi.org/10.1186/s12870-016-0823-3
[5]  Blaner, A., Schneider, J. and Roser, M. (2014) Phylogenetic Rela-tionships in the Grass Family (Poaceae) Based on the Nuclear Single Copy Locus Topoisomerase 6 Compared with Chloroplast DNA. Systematics and Biodiversity, 12, 111-124.
https://doi.org/10.1080/14772000.2014.890137
[6]  Glémin, S., Scornavacca, C., Dainat, J., Burgarella, C., Viader, V., Ardisson, M., Sarah, G., Santoni, S., David, J. and Ranwez, V. (2019) Pervasive Hybridizations in the History of Wheat Relatives. Science Advances, 5, eaav9188.
https://doi.org/10.1126/sciadv.aav9188
[7]  Feldman, M. and Levy, A.A. (2005) Allopolyploidy: A Shaping Force in the Evolution of Wheat Genomes. Cytogenetic and Genome Research, 109, 250-258.
https://doi.org/10.1159/000082407
[8]  谭秀芳, 杜向红, 牛善策, 等. 基于叶绿体序列分析紫茎泽兰在菊科的系统发育[J]. 西北农业学报, 2011, 20(4): 138.
[9]  Nie, X., Lv, S., Zhang, Y., Du, X., Wang, L., et al. (2012) Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina adenophora). PLoS ONE, 7, e36869.
https://doi.org/10.1371/journal.pone.0036869
[10]  Li, H. and Durbin, R. (2009) Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics, 25, 1754-1760.
https://doi.org/10.1093/bioinformatics/btp324
[11]  Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., et al. (2012) SOAPdenovo2: An Empirically Improved Memory-Efficient Short-Read De Novo Assembler. SOA Gigascience, 1, 18.
https://doi.org/10.1186/2047-217X-1-18
[12]  Wyman, S.K., Jansen, R.K. and Boore, J.L. (2014) Automatic An-notation of Organellar Genomes with DOGMA. Bioinformatics, 20, 3252-3255.
https://doi.org/10.1093/bioinformatics/bth352
[13]  Lohse, M., Drechsel, O. and Bock, R. (2007) Organellar Ge-nome DRAW (OGDRAW): A Tool for the Easy Generation of High-Quality Custom Graphical Maps of Plastid and Mitochondrial Genomes. Current Genetics, 52, 267-274.
https://doi.org/10.1007/s00294-007-0161-y
[14]  Kumar, S., Stecher, C. and Tamura, K. (2016) MEGA7: Molec-ular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[15]  Nie, X., Zhao, X., Wang, S., Zhang, T., Li, C., Liu, H., Tong, W. and Guo, Y. (2018) Complete Chloroplast Genome Sequence of Broomcorn Millet (Panicum miliaceum L.) and Comparative Analysis with Other Panicoideae Species. Agronomy, 8, 159.
https://doi.org/10.3390/agronomy8090159
[16]  Bernhardt, N., Brassac, J., Kilian, B. and Blattner, F.R. (2017) Dated Tribe-Wide Whole Chloroplast Genome Phylogeny Indicates Recurrent Hybridizations within Triticeae. BMC Evolutionary Biology, 17, 141.
https://doi.org/10.1186/s12862-017-0989-9
[17]  Huotari, T. and Korpelainen, H. (2012) Complete Chloroplast Genome Sequence of Elodea canadensis and Comparative Analyses with Other Monocot Plastid Genomes. Gene, 508, 96-105.
https://doi.org/10.1016/j.gene.2012.07.020
[18]  王梦醒, 詹豪爽, 吕萌荔, 等. 粗山羊草叶绿体基因RNA编辑位点的鉴定与分析[J]. 麦类作物学报, 2014, 34(10): 1341
[19]  凌宏清. 小麦及其近缘种基因组测序研究进展与发展趋势[J]. 麦类作物学报, 2016, 36(4): 397-403.
[20]  Asaf, S., Khan, A.L., Khan, A.R., Waqas, M., Kang, S.M., Khan, M.A., Lee, S.M. and Lee, I.J. (2016) Complete Chloroplast Genome of Nicotiana otophora and Its Comparison with Related Species. Frontiers in Plant Science, 7, 843.
https://doi.org/10.3389/fpls.2016.00843

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133