|
Co基催化剂上甲苯催化燃烧的研究
|
Abstract:
采用浸渍法制备了Co/CeO2和Co/TiO2催化剂,考察了Co/CeO2和Co/TiO2催化剂催化燃烧甲苯的催化行为。研究表明:Co/CeO2催化剂活性高于Co/TiO2催化剂活性。Co/CeO2催化剂具有较低的起燃温度(T50 = 210℃),同时其在225℃下甲苯的转化效率可稳定在80%。Co/CeO2具有更大的比表面积,可增加反应物与催化剂的接触面积,提高催化剂活性。Co/CeO2和Co/TiO2催化剂中活性组分主要为Co3O4。Co/CeO2催化剂表面含有较高含量的Osurf和Co3O4可能是Co/CeO2催化剂具有更高活性的原因。
Co/CeO2 and Co/TiO2 catalysts were prepared by impregnation method. The catalytic behavior of Co/CeO2 and Co/TiO2 catalysts for catalytic combustion of toluene was investigated. It shows that the activity of Co/CeO2 catalyst is higher than that of Co/TiO2 catalyst. Co/CeO2 catalyst has a lower light-off temperature (T50 = 210?C), while the conversion of toluene can be stabilized at 80% at 225?C on Co/CeO2. Co/CeO2 has a larger specific surface area, which increases the contact area of the reactants with the catalyst, resulting in the higher activity of the catalyst. The active component in the Co/CeO2 and Co/TiO2 catalysts is Co3O4. The higher content of Osurf and Co3O4 on the surface of Co/CeO2 catalyst may be the main reason for the higher activity of Co/CeO2 catalyst.
[1] | 杨利娴. 我国工业源VOCs排放时空分布特征与控制策略研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2012. |
[2] | Zuo, S.F., Liu, F., Tong, J., et al. (2013) Complete Oxidation of Benzene with Cobalt Oxide and Ceria Using Themesoporous Support SBA-16. Applied Catalysis A: General, 467, 1-6. https://doi.org/10.1016/j.apcata.2013.06.056 |
[3] | 张玉娟, 邓积光, 张磊, 等. Fe-SBA-15和FeOx/SBA-15的制备及其对甲苯氧化的催化性能[J]. 科学通报, 2014, 59(26): 2595-2603. |
[4] | 王祥云, 谭念华, 俞钟敏, 等. 混合气体中挥发性有机物的回收技术[J]. 石油化工, 2003, 32(S): 745-747. |
[5] | 范亚维, 周启星. BTEX的环境行为与生态毒理[J]. 生态学杂志, 2008, 27(4): 632-638. |
[6] | Wolicka, D., Suszek, A., Borkowski, A. and Bielecka, A. (2009) Application of Aerobic Microorganisms in Bioremediation in Situ of Soil Contaminated by Petroleum Products. Bioresource Technology, 100, 3221-3227.
https://doi.org/10.1016/j.biortech.2009.02.020 |
[7] | Jo, M.S., Rene, E.R., Kim, S.-H. and Park, H.-S. (2008) Re-moval of BTEX Compounds by Industrial Sludge Microbes in Batch Systems: Statistical Analysis of Main and Inter-action Effects. World Journal of Microbiology and Biotechnolgy, 24, 73-78. https://doi.org/10.1007/s11274-007-9441-4 |
[8] | Liotta, L.F., Ousmane, M., Carlo, G.D., et al. (2008) Total Oxida-tion of Propene at Low Temperature over Co3O4-CeO2 Mixed Oxides: Role of Surface Oxygen Vacancies and Bulk Oxygen Mobility in the Catalytic Activity. Applied Catalysis A: General, 347, 81-88. https://doi.org/10.1016/j.apcata.2008.05.038 |
[9] | 田鹏辉, 丁淼, 赵芷訢, 等. CuO-CeO2/HZSM-5催化剂催化燃烧甲苯性能及动力学研究[J]. 山东化工, 2017, 46(19): 32-34. |
[10] | Gandhe, A.R., Rebello, J.S., Figueiredo, J.L. and Fernandes, J.B. (2007) Manganese Oxide OMS-2 as an Effective Catalyst for Total Oxidation of Ethyl Acetate. Applied Catalysis B: Environmental, 72, 129-135.
https://doi.org/10.1016/j.apcatb.2006.10.017 |
[11] | Pan, H., Jian, Y., Chen, C., et al. (2017) Sphere-Shaped Mn3O4 Catalyst with Remarkable Low-Temperature Activity for Methyl-Ethyl-Ketone Combustion. Environmental Science & Technology, 51, 6288-6297.
https://doi.org/10.1021/acs.est.7b00136 |
[12] | Escobar, G.P., Beroy, A.Q., Pina Iritia, M.P. and Herguido Huerta, J. (2004) Kinetic Study of the Combustion of Methyl-Ethyl Ketone over α-Hematite Catalyst. Chemical Engineering Journal, 102, 107-117.
https://doi.org/10.1016/j.cej.2003.09.006 |
[13] | Grisel, R.J.H. and Nieuwenhuys, B.E. (2001) A Comparative Study of the Oxidation of CO and CH4 over Au/MOx/Al2O3 Catalysts. Catalysis Today, 64, 69-81. https://doi.org/10.1016/S0920-5861(00)00510-1 |
[14] | Szegedi, A., Popova, M. and Minchev, C. (2009) Catalytic Activity of Co/MCM-41 and Co/SBA-15 Materials in Toluene Oxidation. Journal of Materials Science, 44, 6710-6716. https://doi.org/10.1007/s10853-009-3600-y |
[15] | He, C., Yu, Y.K., Shi, J.W., et al. (2015) Mesostructured Cu-Mn-Ce-O Composites with Homogeneous Bulk Composition for Chlorobenzene Removal: Catalytic Performance and Micro Activation Course. Materials Chemistry and Phycics, 157, 87-100. https://doi.org/10.1016/j.matchemphys.2015.03.020 |
[16] | He, C., Yu, Y.K., Shi, J.W., et al. (2015) Anionic Starch-Induced Cu-Based Composite with Flake-Like Mesostructure for Gas-Phase Propanal Efficient Removal. Journal of Colloid and Interface Science, 454, 221-222.
https://doi.org/10.1016/j.jcis.2015.05.021 |
[17] | Liu, Y.X., Dai, H.X., Deng, J.G., et al. (2014) Mesoporous Co3O4-Supported Gold Nanocatalysts: Highly Active for the Oxidation of Carbon Monoxide, Benzene, Toluene, and ο-Xylene. Journal of Catalysis, 309, 408-418.
https://doi.org/10.1016/j.jcat.2013.10.019 |
[18] | 任丽丽. 担载型分子筛催化剂上CH4选择还原NO反应的研究[D]: [博士学位论文]. 大连: 中国科学院大连化学物理研究所, 2003. |