|
负载型Mn基催化剂催化氧化甲苯的研究
|
Abstract:
采用溶胶–凝胶法制备了CeO2和TiO2载体,通过浸渍法制备了Mn/CeO2和Mn/TiO2催化剂,通过催化活性评价和催化表征等方法考察了Mn/CeO2和Mn/TiO2等催化剂氧化甲苯的催化行为。研究表明:催化剂活性为Mn/CeO2 > Mn/TiO2 > TiO2 > CeO2。Mn/CeO2催化剂具有最低的起燃温度(T50 = 180℃),其在215℃下甲苯的转化效率可稳定在80%。Mn/CeO2和Mn/TiO2等催化剂的活性与催化剂的物化结构、催化剂的活性组分有关。相较于Mn/TiO2,Mn/CeO2具有较大的孔体积和比表面积。Mn/CeO2和Mn/TiO2催化剂的活性组分皆主要为Mn3O4。相较于Mn/TiO2,Mn/CeO2催化剂表面具有较高含量的Mn2+和表面氧(Osurf)。
CeO2 and TiO2 supports were synthetized by sol-gel method, Mn/CeO2 and Mn/TiO2 catalysts were prepared by impregnation method. The catalytic behaviors of Mn/CeO2 and Mn/TiO2 for oxidation of toluene were investigated by catalytic activity evaluation and catalyst characterization. The results show that the activities of catalysts decrease in order of Mn/CeO2 > Mn/TiO2 > TiO2 > CeO2. Mn/CeO2 catalyst has the lowest light-off temperature (T50 = 180?C); the conversion of toluene can reach 80% at 215?C. The activity of Mn/CeO2, Mn/CeO2 and other catalysts is related to the physical and chemical structure and the active component of the catalyst. Compared with Mn/TiO2, Mn/CeO2 has higher pore volume and specific surface area compared with Mn/CeO2. The active component of both Mn/CeO2 and Mn/TiO2 is Mn3O4. Compared with Mn/TiO2, Mn/CeO2 catalyst has a higher concentration of Mn2+ and Osurf.
[1] | Kalogridis, C., Gros, V., Sarda-Esteve, R., et al. (2014) Concentrations and Fluxes of Isoprene and Oxygenated VOCs at a French Mediterranean Oak Forest. Atmospheric Chemistry and Physics, 14, 10085-10102.
https://doi.org/10.5194/acp-14-10085-2014 |
[2] | Klimont, Z., Streets, D.G., Gupta, S., et al. (2002) Anthropogenic Emissions of Non-Methane Volatile Organic Compounds in China. Atmospheric Environment, 36, 1309-1322. https://doi.org/10.1016/S1352-2310(01)00529-5 |
[3] | 黎维彬, 龚浩. 催化燃烧去除VOCs污染物的最新进展[J]. 物理化学学报, 2010, 26(4): 885-894. |
[4] | Li, W.B., Chu, W.B., Zhuang, M. and Hua, J. (2004) Catalytic Oxida-tion of Toluene on Mn-Containing Mixed Oxides Prepared in Reverse Microemulsions. Catalysis Today, 93-95, 205-209. https://doi.org/10.1016/j.cattod.2004.06.042 |
[5] | Bertinchamps, F., Grégoire, C. and Gaigneaux, E.M. (2006) Systematic Investigation of Supported Transition Metal Oxide-Based Formulations for the Catalytic Oxidative Elimination of (Chloro)-Aromatics: Part Ⅱ: Influence of the Nature and Addition Protocol of Secondary Phases to VOX/TiO2. Applied Catalysis B: Environmental, 66, 10-22.
https://doi.org/10.1016/j.apcatb.2006.02.012 |
[6] | Choudhary, V.R., Uphade, B.S. and Pataskar, S.G. (2002) Low Temperature Complete Combustion of Dilute Methane over Mn-Doped ZrO2 Catalysts: Factors Influencing the Reactivity of Lattice Oxygen and Methane Combustion Activity of the Catalyst. Applied Catalysis A, 227, 29-41. https://doi.org/10.1016/S0926-860X(01)00925-5 |
[7] | 邢涛, 邵芸, 王家宏, 等. Cr/γ-Al2O3对乙酸乙酯的催化燃烧[J]. 环境化学, 2009, 28(6): 818-822. |
[8] | Pan, H., Jian, Y., Chen, C., et al. (2017) Sphere-Shaped Mn3O4 Cata-lyst with Remarkable Low-Temperature Activity for Methyl-Ethyl-Ketone Combustion. Environmental Science & Technology, 51, 6288-6297.
https://doi.org/10.1021/acs.est.7b00136 |
[9] | He, C., Yu, Y.K., Shi, J.W., et al. (2015) Mesostructured Cu-Mn-Ce-O Composites with Homogeneous Bulk Composition for Chlorobenzene Removal: Catalytic Performance and Micro Activation Course. Materials Chemistry and Phycics, 157, 87-100. https://doi.org/10.1016/j.matchemphys.2015.03.020 |
[10] | He, C., Liu, X.H., Shi, J.W., et al. (2015) Anionic Starch-Induced Cu-Based Composite with Flake-Like Mesostructured for Gas-Phase Prop anal Efficient Removal. Journal of Colloid and Interface Science, 454, 221-222.
https://doi.org/10.1016/j.jcis.2015.05.021 |
[11] | Liu, Y.X., Dai, H.X., Deng, J.G., et al. (2014) Mesoporous Co3O4-Supported Gold Nanocatalysts: Highly Active for the Oxidation of Carbon Monoxide, Benzene, Toluene, and O-Xylene. Journal of Catalysis, 309, 408-418.
https://doi.org/10.1016/j.jcat.2013.10.019 |
[12] | 刘洪喜, 蒋业华, 詹兆麟, 等. PIIID复合强化处理轴承钢表面TiN膜层的XPS表征[J]. 光谱学与光谱分析, 2009, 29(9): 2585-2589. |