全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2019 

基于EKPCA算法的多因子选股模型研究
Research on Multi-Factor Stock Selection Model Based on EKPCA Algorithm

DOI: 10.12677/FIN.2019.94041, PP. 327-340

Keywords: EKPCA算法,多因子选股,通用熵,特征提取,核函数,EKPCA Algorithm, Multi-Factor Stock Selection, The General Entropy, Feature Extraction, Kernel Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

多因子选股模型是量化投资中的主流方法。本文首次引入高效的核主成分分析(Efficient Kernel Principal Component Analysis, EKPCA)算法,以高效的核主成分为自变量建立回归方程预测收益率,构建多因子选股模型。本文基于上证180的成分股进行实证分析,选取包含基本面、技术指标及投资者情绪指标等50多个影响因子,引用EKPCA算法确定基本模式,在高维特征空间提取高效核主成分。与经典KPCA算法对比,EKPCA算法具有更高的特征抽取效率。回测结果显示,构造的投资组合的贝塔系数和夏普比率在所选时间段内均优于市场基准水平,这表明该模型具有较好的选股效果。
The multi-factor stock selection model is the mainstream method in quantitative investment. This paper introduces the Efficient Kernel Principal Component Analysis (EKPCA) algorithm for the first time. The high-efficiency kernel principal component is used as the independent variable to estab-lish the regression equation to predict the rate of return and construct a multi-factor stock selection model. Based on the empirical analysis of the constituents of SSE 180, this paper selects more than 50 impact factors including fundamentals, technical indicators and investor sentiment indicators, and uses the EKPCA algorithm to determine the basic model and extracts high-efficiency kernel principal components in the high-dimensional feature space. Compared with the classical KPCA algorithm, the EKPCA algorithm has higher feature extraction efficiency. The backtest results show that the beta coefficient and Sharpe ratio of the constructed portfolio are better than the market benchmark level in the selected time period, which indicates that the model has a better stock picking effect.

References

[1]  王春丽, 刘光, 王齐. 多因子量化选股模型与择时策略[J]. 东北财经大学学报, 2018, 119(5): 83-89.
[2]  范烨. 多因子选股模型建立的研究[J]. 全国流通经济, 2018(3): 64-65.
[3]  李娜, 毛国君, 邓康立. 基于k-means聚类的股票KDJ类指标综合分析方法[J]. 计算机与现代化, 2018, 278(10): 12-17.
[4]  苏治, 傅晓媛. 核主成分遗传算法与SVR选股模型改进[J]. 统计研究, 2013, 30(5): 54-62.
[5]  贾秀娟. 基于随机森林的支持向量机量化选股[J]. 区域金融研究, 2019(1): 27-30.
[6]  吕凯晨, 闫宏飞, 陈翀. 基于沪深300成分股的量化投资策略研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 1-12.
[7]  徐景昭. 基于多因子模型的量化选股分析[J]. 金融理论探索, 2017(3): 30-38.
[8]  朱晨曦. 我国A股市场多因子量化选股模型实证分析[D]: [硕士学位论文]. 北京: 首都经济贸易大学, 2017.
[9]  凌士勤, 苏乐. 投资者情绪与股票收益的实证研究——基于扩展卡尔曼滤波的方法[J]. 时代金融, 2017(6): 192.
[10]  王锐. 岭回归分析在解决经济数据共线性问题中的应用[J]. 经济研究导刊, 2018(22): 144-147.
[11]  Fan, Z., Wang, J., Xu, B. and Tang, P. (2014) An Efficient KPCA Algorithm Based on Feature Correla-tion Evaluation. Neural Computing and Applications, 24, 1795-1806.
https://doi.org/10.1007/s00521-013-1424-9
[12]  周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 60-62, 128.
[13]  Sun, R., Tsung, F. and Qu, L. (2007) Evolving Kernel Principal Component Analysis for Fault Diagnosis. Computers & Industrial Engineering, 53, 361-371.
https://doi.org/10.1016/j.cie.2007.06.029
[14]  范自柱. 新型特征抽取算法研究[M]. 合肥: 中国科学技术大学出版社, 2016: 95-102, 122-128.
[15]  吴世农, 韦绍永. 上海股市投资组合规模和风险关系的实证研究[J]. 经济研究, 1998(4): 22-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133