全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GAM模型对失效数变化的分析
Analysis of Failure Number Change Based on GAM Model

DOI: 10.12677/CSA.2019.97141, PP. 1255-1265

Keywords: 失效数,GAM模型,交互作用
Failure Number
, GAM Model, Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对软件生产进程中测试的过程数据,利用带有交互作用的GAM,对测试过程中的失效变化数据进行分析,研究影响因素以及因素间的交互作用。本文首先对失效变化数据,比较了GAM和带有交互作用的GAM的拟合效果;其次,比较了带有交互作用的GAM与现有的机器学习模型的预测结果。结果表明,带有交互作用的GAM相较于GAM所得的结果更加丰富,且优于已有的机器学习方法,因此这样的探讨分析是有意义的,并对软件开发以及采取测试决策有一定的实际指导意义。
In this paper, the process data in the process of software production is used to analyze the failure change data in the test process by using GAM with interaction, and to study the influencing factors and the interaction between the factors. In this paper, the fitting effects of GAM and GAM with interaction are compared firstly with the failure change data. Secondly, the prediction results of GAM with interaction and existing machine learning model are compared. The results show that the GAM with interaction is more abundant than that obtained by GAM, and it is better than the existing machine learning method. Therefore, such analysis and analysis is meaningful.

References

[1]  杨敏娟. 北京市大气污染与居民心脑血管死亡的时间序列分析[J]. 环境科学, 2015, 36(10): 122.
[2]  Humphrey, W.S. (2001) The Future of Software Engineering: I.
[3]  Musa, J.D. (1992) The Operational Profile in Software Reliability Engineering: An Over-view. Proceedings of 3rd International Symposium on Software Reliability Engineering, Research Triangle Park, 7-10 October 1992, 140-154.
[4]  李丽霞, 郜艳晖, 周舒冬, 等. 广义加性模型及其应用[J]. 中国卫生统计, 2007, 24(3): 243-244.
[5]  Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. Chapman and Hall, London.
[6]  贾林, 王彤. GAM共曲线性及其在空气污染问题研究中的应用[J]. 第四军医大学学报, 2005, 26(3): 280-283.
[7]  Humphrey, W.S. (2001) The Future of Software Engi-neering: I. Watts New Column, News at SEI, Vol. 4. No. 1, March.
[8]  IEEE Std 1633-2008 (2008) IEEE Recommended Practice on Software Reliability. IEEE Reliability Society, New York.
[9]  郑骏. 软件可靠性建模的发展和存在的问题[J]. 计算机科学, 1995, 22(6): 74-78.
[10]  刘超, 金茂忠. 软件测试过程的基本模型POCERM[J]. 北京航空航天大学学报, 1997, 23(1): 56-60.
[11]  陈光宇, 黄锡滋. 软件可靠性学科发展现状及展望[J]. 电子科技大学学报: 社科版, 2004, 4(3): 99-102.
[12]  刘云, 赵玮. 软件可靠性研究与进展[J]. 微机发展, 2003, 13(2): 12-15.
[13]  杨玉丽. 软件可靠性的研究现状与展望[J]. 电脑知识与技术, 2010, 6(1): 128-129.
[14]  Xie, W., Wu, J., Sun, H. and Zhang, L. (2017) A Distribution-Level Combinational Model to Improve Reliability Prediction Accuracy. International Journal of Performability Engineering, 13, 832-843.
https://doi.org/10.23940/ijpe.17.06.p5.832843
[15]  Wu, J., Ali, S., Yue, T., Tian, J. and Liu, C. (2016) Assessing the Quality of Industrial Avionics Software: An Extensive Empirical Evaluation. Empirical Software Engineering, 22, 1634-1683.
https://doi.org/10.1007/s10664-016-9440-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133