全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向应用领域的推荐方法研究综述
A Review of the Research on Recommendation Methods for Application Fields

DOI: 10.12677/CSA.2019.97148, PP. 1317-1327

Keywords: 推荐方法,深度学习,音乐,视频
Recommended Methods
, Deep Learning, Music, Video

Full-Text   Cite this paper   Add to My Lib

Abstract:

推荐方法是解决“信息过载”问题的一种热门研究技术,传统的推荐方法在音乐、视频、新闻等领域存在数据稀疏、冷启动等问题,将深度学习融入推荐方法中,可以有效解决上述问题。对传统推荐方法在音乐、视频、新闻等领域的应用进行分析,重点介绍基于深度学习的音乐和视频领域的推荐方法,最后对基于深度学习的推荐方法进行了总结和展望。
Recommendation method is a popular research technology to solve the problem of “information overload”. Traditional recommendation methods have problems such as data sparse and cold start in music, video, news and other fields. Deep learning can be integrated into the recommendation method to effectively solve the above problems. This paper analyzes the application of traditional recommendation methods in music, video, news and other fields, focuses on the recommendation methods in music and video fields based on deep learning, and finally summarizes and prospects the recommendation methods based on deep learning.

References

[1]  郭佳, 黄程松. 国外网络环境中信息过载研究进展[J]. 情报科学, 2018, 36(7): 170-176.
[2]  印鉴, 陈忆群, 张钢. 搜索引擎技术研究与发展[J]. 计算机工程, 2005, 31(14): 54-56+104.
[3]  Mauro, N., Ardissono, L., Rocco, L.D., et al. (2018) Impact of Se-mantic Granularity on Geographic Information Search Support. IEEE/WIC/ACM International Conference on Web Intelligence, Santia-go, 3-6 December 2018, 70-73.
https://doi.org/10.1109/WI.2018.00-73
[4]  姜恩波. 搜索引擎的信息过滤技术[J]. 现代图书情报技术, 2001(3): 33-35.
[5]  施晓峰. 基于分布式NoSQL数据库的档案大数据存储与检索方案研究[J]. 计算机应用与软件, 2019, 36(5): 15-20.
[6]  Lassalle, A., Pigat, D., O’Reilly, H., et al. (2019) The EU-Emotion Voice Database. Behavior Research Methods, 51, 493-506.
https://doi.org/10.3758/s13428-018-1048-1
[7]  徐梓荐, 叶盛, 张孝. 分布式异构数据库数据同步工具[J]. 软件学报, 2019, 30(3): 684-699.
[8]  Wang, R., Huang, S., Zhou, Y., et al. (2019) Chinese Character Handwriting: A Large-Scale Behavior-al Study and a Database. Behavior Research Methods, 1-15.
https://doi.org/10.3758/s13428-019-01206-4
[9]  崔斌, 高军, 童咏昕, 许建秋, 张东祥, 邹磊. 新型数据管理系统研究进展与趋势[J]. 软件学报, 2019, 30(1): 164-193.
[10]  Schafer, J.B., Konstan, J.A. and Riedl, J. (2001) E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery, 5, 115-153.
https://doi.org/10.1023/A:1009804230409
[11]  John, R., Mitesh, S., Neophytos, I., et al. (1994) GroupLens: An Open Architec-ture for Collaborative Filtering of Netnews. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, 22-26 October 1994, 175-186.
[12]  Su, X. and Khoshgoftaar, T.M. (2009) A Survey of Collaborative Filtering Tech-niques. Advances in Artificial Intelligence, 2009, Article No. 4.
https://doi.org/10.1155/2009/421425
[13]  Mooney, R.J. and Roy, L. (2000) Content-Based Book Recommending Using Learning for Text Categorization. Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, 2-7 June 2000, 195-204.
https://doi.org/10.1145/336597.336662
[14]  Breese, B.J.S., Heckerman, D. and Kadie, C. (2013) Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Uncertainty in Artificial Intelligence, 98, 43-52.
[15]  Balabanovic, M. and Shoham, Y. (1997) Fab: Content-Based, Collaborative Recommendation. Communications of the ACM, 40, 66-72.
https://doi.org/10.1145/245108.245124
[16]  Zhang, F., Yuan, N.J., Lian, D., et al. (2016) Collaborative Knowledge Base Em-bedding for Recommender Systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 353-362.
https://doi.org/10.1145/2939672.2939673
[17]  Wang, H., Wang, N. and Yeung, D.Y. (2015) Collaborative Deep Learning for Recommender Systems. Proceedings of the 21st ACM SIGKDD Internation-al Conference on Knowledge Discovery and Data Mining, Sydney, 10-13 August 2015, 1235-1244.
https://doi.org/10.1145/2783258.2783273
[18]  Covington, P., Adams, J. and Sargin, E. (2016) Deep Neural Networks for Youtube Recommendations. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 17 September 2016, 191-198.
https://doi.org/10.1145/2959100.2959190
[19]  Wu, C.Y., Ahmed, A., Beutel, A., et al. (2017) Recurrent Recommender Net-works. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, 6-10 February 2017, 495-503.
https://doi.org/10.1145/3018661.3018689
[20]  Elkahky, A.M., Song, Y. and He, X. (2015) A Multi-View Deep Learning Ap-proach for Cross Domain User Modeling in Recommendation Systems. Proceedings of the 24th International Conference on World Wide Web, Florence, 18-22 May 2015, 278-288.
https://doi.org/10.1145/2736277.2741667
[21]  Cheng, H.T., Koc, L., Harmsen, J., et al. (2016) Wide & Deep Learning for Recommender Systems. Proceedings of the 1st Workshop on Deep Learning for Recom-mender Systems, Boston, 15 September 2016, 7-10.
https://doi.org/10.1145/2988450.2988454
[22]  Li, S., Kawale, J. and Fu, Y. (2015) Deep Collaborative Filtering via Marginalized Denoising Autcrencoder. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, 19-23 October 2015, 811-820.
https://doi.org/10.1145/2806416.2806527
[23]  Wu, Y., DuBois, C., Zheng, A.X., et al. (2016) Collaborative Denoising Auto-Encoders for Top-n Recommender Systems. Proceedings of the 9th ACM International Con-ference on Web Search and Data Mining, San Francisco, 22-25 February 2016, 153-162.
https://doi.org/10.1145/2835776.2835837
[24]  Zheng, L., Noroozi, V. and Yu, P.S. (2017) Joint Deep Modeling of Users and Items Using Reviews for Recommendation. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, 6-10 February 2017, 425-434.
https://doi.org/10.1145/3018661.3018665
[25]  Hsieh, C.K., Yang, L., Cui, Y., et al. (2017) Collaborative Metric Learning. Proceedings of the 26th International Conference on World Wide Web, Perth, 3-7 April 2017, 193-201.
https://doi.org/10.1145/3038912.3052639
[26]  Bansal, T., Belanger, D. and McCallum, A. (2016) Ask the GRU: Mul-ti-Task Learning for Deep Text Recommendations. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 107-114.
https://doi.org/10.1145/2959100.2959180
[27]  Song, Y., Elkahky, A.M. and He, X. (2016) Multi-Rate Deep Learning for Tem-poral Recommendation. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, 17-21 July 2016, 909-912.
https://doi.org/10.1145/2911451.2914726
[28]  Vasile, F., Smirnova, E. and Conneau, A. (2016) Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation. Proceedings of the ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 225-232.
https://doi.org/10.1145/2959100.2959160
[29]  Roy, S. and Guntuku, S.C. (2016) Latent Factor Representations for Cold-Start Video Recommendation. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 99-106.
https://doi.org/10.1145/2959100.2959172
[30]  潘洋, 陈盛双, 李石君. 融合因子分解机和用户行为预测的音乐推荐[J]. 计算机工程与应用, 2017, 53(17): 101-107.
[31]  琚春华, 汪澍. 一种融入用户情绪因素的综合音乐推荐方法[J]. 情报学报, 2017, 36(6): 578-589.
[32]  Wang, M., Xiao, Y., Zheng, W., Jiao, X. and Hsu, C. (2018) Tag-Based Personalized Music Recommendation. 15th International Symposium on Pervasive Systems, Algorithms and Networks, Yichang, 16-18 October 2018, 201-208.
https://doi.org/10.1109/I-SPAN.2018.00040
[33]  Schedl, M. and Bauer, C. (2017) Distance- and Rank-Based Music Main-streaminess Measurement. Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, Bratislava, 9-12 July 2017, 364-367.
https://doi.org/10.1145/3099023.3099098
[34]  Ferraro, A., Bogdanov, D., Choi, K., et al. (2019) Using Offline Metrics and User Behavior Analysis to Combine Multiple Systems for Music Recommendation.
[35]  孔欣欣, 苏本昌, 王宏志, 高宏, 李建中. 基于标签权重评分的推荐模型及算法研究[J]. 计算机学报, 2017, 40(6): 1440-1452.
[36]  林鑫, 桑运鑫, 龙存钰. 基于用户决策机理的个性化推荐[J]. 图书情报工作, 2019, 63(2): 99-106.
[37]  Tzamousis, E. and Papadopouli, M. (2019) On Hybrid Modular Recommendation Systems for Video Streaming.
[38]  Nguyen, T.B., Aihara, K. and Takasu, A. (2017) A Probabilistic Model for Collaborative Filtering with Implicit and Explicit Feedback Data.
[39]  张飞, 张立波, 罗铁坚, 武延军. 一种基于特征的协同聚类模型[J]. 计算机研究与发展, 2018, 55(7): 1508-1524.
[40]  张文静, 李锦屏, 杨军. 协同过滤推荐中一种改进的信息核提取方法[J/OL]. 计算机应用研究, 1-6.
[41]  袁仁进, 陈刚. 顾及事件地理位置的新闻推荐方法研究[J]. 计算机科学, 2018, 45(S2): 462-467.
[42]  袁仁进, 陈刚, 李锋, 魏双建. 基于VSM和Bisecting K-means聚类的新闻推荐方法[J]. 北京邮电大学学报, 2019, 42(1): 114-119.
[43]  袁仁进, 陈刚, 李锋. 面向新闻推荐的用户兴趣模型构建与更新[J/OL]. 计算机应用研究, 1-5. 2019-05-30.
[44]  朱文跃, 刘炜, 刘宗田. 基于事件本体的新闻个性化推荐[J/OL]. 计算机工程, 1-8. 2019-05-30.
[45]  Chakraborty, A., Ghosh, S., Ganguly, N. and Gummadi, K.P. (2019) Optimizing the Recency-Relevance-Diversity Trade-Offs in Non-Personalized News Recommendations. Information Retrieval Journal, 1-29.
https://doi.org/10.1007/s10791-019-09351-2
[46]  Pons, J. and Serra, X. (2018) Randomly Weighted CNNs for (Music) Audio Classification. IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, 12-17 May 2019, 336-340.
https://doi.org/10.1109/ICASSP.2019.8682912
[47]  Kim, T., Lee, J. and Nam, J. (2018) Sample-Level CNN Architectures for Music Auto-Tagging Using Raw Waveforms. IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, 15-20 April 2018, 366-370.
https://doi.org/10.1109/ICASSP.2018.8462046
[48]  Lee, J., Park, J., Kim, K.L., et al. (2017) Sample-Level Deep Convolutional Neural Networks for Music Auto-Tagging Using Raw Waveforms. 14th Sound & Music Computing Conference, At Espoo, 5-8 July 2017, 1-7.
[49]  Lee, J., Kim, T., Park, J., et al. (2017) Raw Waveform-Based Audio Classification Using Sample-Level CNN Archi-tectures. 31st Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 1-5.
[50]  Abdul, A., Chen, J., Liao, H.Y., et al. (2018) An Emotion-Aware Personalized Music Recommendation System Using a Convolutional Neural Networks Approach. Applied Sciences, 8, 1103.
https://doi.org/10.3390/app8071103
[51]  Hewitt, C. and Gunes, H. (2018) CNN-Based Facial Affect Analysis on Mobile Devices.
[52]  汤敬浩, 杜炜, 朱月俊. 深度学习在音乐推荐中的应用[J]. 计算机产品与流通, 2017(7): 203-205.
[53]  汤敬浩. 基于深度学习的音乐推荐系统[D]: [硕士学位论文]. 北京: 北京邮电大学, 2018.
[54]  Wang, X. and Wang, Y. (2014) Improving Content-Based and Hybrid Music Recommendation Using Deep Learning. Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, 3-7 November 2014, 627-636.
https://doi.org/10.1145/2647868.2654940
[55]  Li, Y., Wang, H., Liu, H. and Chen, B. (2017) A Study on Content-Based Video Recommendation. IEEE International Conference on Image Processing, Beijing, 17-20 September 2017, 4581-4585.
https://doi.org/10.1109/ICIP.2017.8297150
[56]  李南星, 盛益强, 倪宏. 用于个性化推荐的条件卷积隐因子模型[J/OL]. 计算机工程, 1-10. 2019-06-01.
[57]  蔡念, 刘广聪, 蔡红丹. 改进矩阵分解与卷积神经网络结合的推荐模型[J/OL]. 计算机工程与应用, 1-8. 2019-05-30.
[58]  王海艳, 董茂伟. 基于动态卷积概率矩阵分解的潜在群组推荐[J]. 计算机研究与发展, 2017, 54(8): 1853-1863.
[59]  冯楚滢, 司徒国强, 倪玮隆. 协同深度学习推荐算法研究[J]. 计算机系统应用, 2019, 28(1): 169-175.
[60]  曾旭禹, 杨燕, 王淑营, 何太军, 陈剑波. 一种基于深度学习的混合推荐算法[J]. 计算机科学, 2019, 46(1): 126-130.
[61]  张光荣, 王宝亮, 侯永宏. 融合标签的实值条件受限波尔兹曼机推荐算法[J]. 计算机科学与探索, 2019, 13(1): 138-146.
[62]  刘康迪. 基于深度学习的电影推荐系统研究与应用[D]: [硕士学位论文]. 北京: 北京工业大学, 2018.
[63]  沈学利, 赫辰皓, 孟祥福. 受限玻尔兹曼机与加权Slope One的混合推荐算法研究[J/OL]. 计算机应用研究, 1-5. 2019-05-22.
[64]  Zhang, H., Yang, H., Huang, T. and Zhan, G. (2017) DBNCF: Personalized Courses Recommendation System Based on DBN in MOOC Environment. International Symposium on Educational Technology, Hong Kong, 27-29 June 2017, 106-108.
https://doi.org/10.1109/ISET.2017.33
[65]  Cui, H. and Qin, X. (2015) The Video Recommendation System Based on DBN. IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, 26-28 October 2015, 1016-1021.
[66]  黄兰. 基于DBN分类的协同过滤推荐算法研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆大学, 2017.
[67]  周悦芝, 张迪. 近端云计算: 后云计算时代的机遇与挑战[J]. 计算机学报, 2019, 42(4): 677-700.
[68]  林晖, 于孟洋, 田有亮, 黄毅杰. 移动云计算中基于动态博弈和可靠推荐的传递信誉机制[J]. 通信学报, 2018, 39(5): 85-93.
[69]  程淑玉. 基于大数据的云计算网络协同创新平台的研究[J]. 安徽理工大学学报(自然科学版), 2017, 37(3): 72-78.
[70]  Guedes, T., Jesus, L.A., Kary, A.C., Oca?a, S., et al. (2019) Provenance-Based Fault Tolerance Technique Recommendation for Cloud-Based Scientific Workflows: A Practical Approach. Cluster Computing, 1, 1-26.
https://doi.org/10.1007/s10586-019-02920-6
[71]  Chen, J., Li, K., Rong, H., et al. (2018) A Disease Diagnosis and Treatment Recommendation System Based on Big Data Mining and Cloud Computing. Information Sciences, 1-5.
https://doi.org/10.1016/j.ins.2018.01.001
[72]  刘建勋, 石敏, 周栋, 唐明董, 张婷婷. 基于主题模型的Mashup标签推荐方法[J]. 计算机学报, 2017, 40(2): 520-534.
[73]  游静, 冯辉, 孙玉强. 云环境下基于协同推荐的信任评估与服务选择[J]. 计算机科学, 2016, 43(5): 140-145.
[74]  Muthusankar, D., Kalaavathi, B. and Kaladevi, P. (2018) High Performance Feature Selection Algorithms Using Filter Method for Cloud-Based Recommendation System. Cluster Computing, 1-12.
https://doi.org/10.1007/s10586-018-1901-0
[75]  Zhang, F., Ma, H., Peng, L., et al. (2017) Recommendation Algorithm of Cloud Computing System Based on Random Walk Algorithm and Collaborative Filtering Model. 3rd International Conference on Social Sci-ence, Management and Economics, Guangzhou, 13-14 May 2017, 79-81.
https://doi.org/10.12783/dtssehs/ssme2017/13003
[76]  汪峰坤, 任海鹏. 云计算在健康体检项智能推荐系统中的应用与设计[J]. 绥化学院学报, 2018, 38(2): 152-154.
[77]  Zhou, T., Chen, L. and Shen, J. (2017) Movie Recommendation System Employing the User-Based CF in Cloud Computing. IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing, Guangzhou, 21-24 July 2017, 46-50.
https://doi.org/10.1109/CSE-EUC.2017.194
[78]  Hu, H. and Chen, T. (2016) Design and Implementation of Agricultural Produc-tion and Market Information Recommendation System Based on Cloud Computing. International Conference on Intelligent Computa-tion Technology & Automation, Nanchang, 14-15 June 2015, 367-370.
https://doi.org/10.1109/ICICTA.2015.99
[79]  Su, J., Huang, Y., Lv, G., et al. (2016) A Framework Research of Power Grid Knowledge Recommendation and Situation Reasoning Based on Cloud Computing and CEP. IEEE International Conference on Cyber Security & Cloud Computing, Beijing, 25-27 June 2016, 79-83.
https://doi.org/10.1109/CSCloud.2016.14
[80]  Bhaskaran, S. and Santhi, B. (2017) An Efficient Personalized Trust Based Hybrid Recommendation (TBHR) Strategy for e-Learning System in Cloud Computing. Cluster Computing, 1-13.
https://doi.org/10.1007/s10586-017-1160-5
[81]  应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13): 111-117.
[82]  王聪, 郑宜峰, 蒋精华, 任奎. 实现隐私保护个性化推荐服务[J]. Engineering, 2018, 4(1): 48-65.
[83]  蒋宗礼, 乔向梅. 基于差分隐私保护的模糊C均值聚类推荐[J]. 计算机系统应用, 2018, 27(10): 189-195.
[84]  Yin, C., Shi, L., Sun, R., et al. (2019) Improved Collaborative Filtering Recommendation Algorithm Based on Differential Privacy Protec-tion. The Journal of Supercomputing, No. 7, 1-14.
https://doi.org/10.1007/s11227-019-02751-7
[85]  路应金, 杜素娟. 基于奇异值分解模型的在线实时推荐的隐私保护[J]. 电子科技大学学报(社科版), 2017, 19(2): 74-81.
[86]  彭慧丽, 张啸剑, 金凯忠. 基于差分隐私的社交推荐方法[J]. 计算机科学, 2017, 44(S1): 395-398+423.
[87]  Yu, J., Kuang, Z., Yu, Z., et al. (2018) Privacy Setting Recommendation for Image Sharing. IEEE International Conference on Machine Learning & Applications, Orlando, 17-20 December 2018, 726-730.
https://doi.org/10.1109/ICMLA.2017.00-73
[88]  Wang, C., Zheng, Y., Jiang, J., et al. (2018) Toward Privacy-Preserving Per-sonalized Recommendation Services. Engineering, 4, 21-28.
https://doi.org/10.1016/j.eng.2018.02.005
[89]  何明, 常盟盟, 吴小飞. 一种基于差分隐私保护的协同过滤推荐方法[J]. 计算机研究与发展, 2017, 54(7): 1439-1451.
[90]  王利娥, 许元馨, 李先贤, 刘鹏. 移动商务推荐系统中的一种基于P2P的隐私保护策略[J]. 计算机科学, 2017, 44(9): 178-183.
[91]  王换换, 吴响, 俞啸, 胡俊峰. TopN推荐系统的差分隐私保护研究[J]. 中国科技论文, 2017, 12(20): 2326-2330.
[92]  郑剑, 王啸乾. 融合标签相似度的差分隐私矩阵分解推荐算法[J/OL]. 计算机应用研究, 1-6 2019-05-23.
[93]  Zhao, Y., Li, D., Lv, Q., et al. (2018) A Scala-ble Algorithm for Privacy-Preserving Item-based Top-N Recommendation.
[94]  Shin, H., Kim, S., Shin, J., et al. (2018) Privacy En-hanced Matrix Factorization for Recommendation with Local Differential Privacy. IEEE Transactions on Knowledge and Data Engi-neering, 30, 1770-1782.
https://doi.org/10.1109/TKDE.2018.2805356
[95]  Meng, X., et al. (2018) Towards Privacy Preserving Social Recommendation under Personalized Privacy Settings. World Wide Web, 1-29.
[96]  Qi, L., et al. (2018) An Exception Handling Approach for Priva-cy-Preserving Service Recommendation Failure in a Cloud Environment. Sensors, 18, 2037.
https://doi.org/10.3390/s18072037
[97]  Feng, P., Zhu, H., Liu, Y., et al. (2018) Differential Privacy Protection Recommendation Algorithm Based on Student Learning Behavior. IEEE 15th International Conference on e-Business Engineering, Xi’an, 12-14 October 2018, 285-288.
https://doi.org/10.1109/ICEBE.2018.00054

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133