|
面向应用领域的推荐方法研究综述
|
Abstract:
[1] | 郭佳, 黄程松. 国外网络环境中信息过载研究进展[J]. 情报科学, 2018, 36(7): 170-176. |
[2] | 印鉴, 陈忆群, 张钢. 搜索引擎技术研究与发展[J]. 计算机工程, 2005, 31(14): 54-56+104. |
[3] | Mauro, N., Ardissono, L., Rocco, L.D., et al. (2018) Impact of Se-mantic Granularity on Geographic Information Search Support. IEEE/WIC/ACM International Conference on Web Intelligence, Santia-go, 3-6 December 2018, 70-73.
https://doi.org/10.1109/WI.2018.00-73 |
[4] | 姜恩波. 搜索引擎的信息过滤技术[J]. 现代图书情报技术, 2001(3): 33-35. |
[5] | 施晓峰. 基于分布式NoSQL数据库的档案大数据存储与检索方案研究[J]. 计算机应用与软件, 2019, 36(5): 15-20. |
[6] | Lassalle, A., Pigat, D., O’Reilly, H., et al. (2019) The EU-Emotion Voice Database. Behavior Research Methods, 51, 493-506. https://doi.org/10.3758/s13428-018-1048-1 |
[7] | 徐梓荐, 叶盛, 张孝. 分布式异构数据库数据同步工具[J]. 软件学报, 2019, 30(3): 684-699. |
[8] | Wang, R., Huang, S., Zhou, Y., et al. (2019) Chinese Character Handwriting: A Large-Scale Behavior-al Study and a Database. Behavior Research Methods, 1-15. https://doi.org/10.3758/s13428-019-01206-4 |
[9] | 崔斌, 高军, 童咏昕, 许建秋, 张东祥, 邹磊. 新型数据管理系统研究进展与趋势[J]. 软件学报, 2019, 30(1): 164-193. |
[10] | Schafer, J.B., Konstan, J.A. and Riedl, J. (2001) E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery, 5, 115-153. https://doi.org/10.1023/A:1009804230409 |
[11] | John, R., Mitesh, S., Neophytos, I., et al. (1994) GroupLens: An Open Architec-ture for Collaborative Filtering of Netnews. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, 22-26 October 1994, 175-186. |
[12] | Su, X. and Khoshgoftaar, T.M. (2009) A Survey of Collaborative Filtering Tech-niques. Advances in Artificial Intelligence, 2009, Article No. 4. https://doi.org/10.1155/2009/421425 |
[13] | Mooney, R.J. and Roy, L. (2000) Content-Based Book Recommending Using Learning for Text Categorization. Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, 2-7 June 2000, 195-204.
https://doi.org/10.1145/336597.336662 |
[14] | Breese, B.J.S., Heckerman, D. and Kadie, C. (2013) Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Uncertainty in Artificial Intelligence, 98, 43-52. |
[15] | Balabanovic, M. and Shoham, Y. (1997) Fab: Content-Based, Collaborative Recommendation. Communications of the ACM, 40, 66-72. https://doi.org/10.1145/245108.245124 |
[16] | Zhang, F., Yuan, N.J., Lian, D., et al. (2016) Collaborative Knowledge Base Em-bedding for Recommender Systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 353-362. https://doi.org/10.1145/2939672.2939673 |
[17] | Wang, H., Wang, N. and Yeung, D.Y. (2015) Collaborative Deep Learning for Recommender Systems. Proceedings of the 21st ACM SIGKDD Internation-al Conference on Knowledge Discovery and Data Mining, Sydney, 10-13 August 2015, 1235-1244. https://doi.org/10.1145/2783258.2783273 |
[18] | Covington, P., Adams, J. and Sargin, E. (2016) Deep Neural Networks for Youtube Recommendations. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 17 September 2016, 191-198.
https://doi.org/10.1145/2959100.2959190 |
[19] | Wu, C.Y., Ahmed, A., Beutel, A., et al. (2017) Recurrent Recommender Net-works. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, 6-10 February 2017, 495-503.
https://doi.org/10.1145/3018661.3018689 |
[20] | Elkahky, A.M., Song, Y. and He, X. (2015) A Multi-View Deep Learning Ap-proach for Cross Domain User Modeling in Recommendation Systems. Proceedings of the 24th International Conference on World Wide Web, Florence, 18-22 May 2015, 278-288. https://doi.org/10.1145/2736277.2741667 |
[21] | Cheng, H.T., Koc, L., Harmsen, J., et al. (2016) Wide & Deep Learning for Recommender Systems. Proceedings of the 1st Workshop on Deep Learning for Recom-mender Systems, Boston, 15 September 2016, 7-10.
https://doi.org/10.1145/2988450.2988454 |
[22] | Li, S., Kawale, J. and Fu, Y. (2015) Deep Collaborative Filtering via Marginalized Denoising Autcrencoder. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, 19-23 October 2015, 811-820. https://doi.org/10.1145/2806416.2806527 |
[23] | Wu, Y., DuBois, C., Zheng, A.X., et al. (2016) Collaborative Denoising Auto-Encoders for Top-n Recommender Systems. Proceedings of the 9th ACM International Con-ference on Web Search and Data Mining, San Francisco, 22-25 February 2016, 153-162. https://doi.org/10.1145/2835776.2835837 |
[24] | Zheng, L., Noroozi, V. and Yu, P.S. (2017) Joint Deep Modeling of Users and Items Using Reviews for Recommendation. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, 6-10 February 2017, 425-434. https://doi.org/10.1145/3018661.3018665 |
[25] | Hsieh, C.K., Yang, L., Cui, Y., et al. (2017) Collaborative Metric Learning. Proceedings of the 26th International Conference on World Wide Web, Perth, 3-7 April 2017, 193-201. https://doi.org/10.1145/3038912.3052639 |
[26] | Bansal, T., Belanger, D. and McCallum, A. (2016) Ask the GRU: Mul-ti-Task Learning for Deep Text Recommendations. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 107-114.
https://doi.org/10.1145/2959100.2959180 |
[27] | Song, Y., Elkahky, A.M. and He, X. (2016) Multi-Rate Deep Learning for Tem-poral Recommendation. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, 17-21 July 2016, 909-912. https://doi.org/10.1145/2911451.2914726 |
[28] | Vasile, F., Smirnova, E. and Conneau, A. (2016) Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation. Proceedings of the ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 225-232. https://doi.org/10.1145/2959100.2959160 |
[29] | Roy, S. and Guntuku, S.C. (2016) Latent Factor Representations for Cold-Start Video Recommendation. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 99-106.
https://doi.org/10.1145/2959100.2959172 |
[30] | 潘洋, 陈盛双, 李石君. 融合因子分解机和用户行为预测的音乐推荐[J]. 计算机工程与应用, 2017, 53(17): 101-107. |
[31] | 琚春华, 汪澍. 一种融入用户情绪因素的综合音乐推荐方法[J]. 情报学报, 2017, 36(6): 578-589. |
[32] | Wang, M., Xiao, Y., Zheng, W., Jiao, X. and Hsu, C. (2018) Tag-Based Personalized Music Recommendation. 15th International Symposium on Pervasive Systems, Algorithms and Networks, Yichang, 16-18 October 2018, 201-208.
https://doi.org/10.1109/I-SPAN.2018.00040 |
[33] | Schedl, M. and Bauer, C. (2017) Distance- and Rank-Based Music Main-streaminess Measurement. Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, Bratislava, 9-12 July 2017, 364-367.
https://doi.org/10.1145/3099023.3099098 |
[34] | Ferraro, A., Bogdanov, D., Choi, K., et al. (2019) Using Offline Metrics and User Behavior Analysis to Combine Multiple Systems for Music Recommendation. |
[35] | 孔欣欣, 苏本昌, 王宏志, 高宏, 李建中. 基于标签权重评分的推荐模型及算法研究[J]. 计算机学报, 2017, 40(6): 1440-1452. |
[36] | 林鑫, 桑运鑫, 龙存钰. 基于用户决策机理的个性化推荐[J]. 图书情报工作, 2019, 63(2): 99-106. |
[37] | Tzamousis, E. and Papadopouli, M. (2019) On Hybrid Modular Recommendation Systems for Video Streaming. |
[38] | Nguyen, T.B., Aihara, K. and Takasu, A. (2017) A Probabilistic Model for Collaborative Filtering with Implicit and Explicit Feedback Data. |
[39] | 张飞, 张立波, 罗铁坚, 武延军. 一种基于特征的协同聚类模型[J]. 计算机研究与发展, 2018, 55(7): 1508-1524. |
[40] | 张文静, 李锦屏, 杨军. 协同过滤推荐中一种改进的信息核提取方法[J/OL]. 计算机应用研究, 1-6. |
[41] | 袁仁进, 陈刚. 顾及事件地理位置的新闻推荐方法研究[J]. 计算机科学, 2018, 45(S2): 462-467. |
[42] | 袁仁进, 陈刚, 李锋, 魏双建. 基于VSM和Bisecting K-means聚类的新闻推荐方法[J]. 北京邮电大学学报, 2019, 42(1): 114-119. |
[43] | 袁仁进, 陈刚, 李锋. 面向新闻推荐的用户兴趣模型构建与更新[J/OL]. 计算机应用研究, 1-5. 2019-05-30. |
[44] | 朱文跃, 刘炜, 刘宗田. 基于事件本体的新闻个性化推荐[J/OL]. 计算机工程, 1-8. 2019-05-30. |
[45] | Chakraborty, A., Ghosh, S., Ganguly, N. and Gummadi, K.P. (2019) Optimizing the Recency-Relevance-Diversity Trade-Offs in Non-Personalized News Recommendations. Information Retrieval Journal, 1-29.
https://doi.org/10.1007/s10791-019-09351-2 |
[46] | Pons, J. and Serra, X. (2018) Randomly Weighted CNNs for (Music) Audio Classification. IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, 12-17 May 2019, 336-340.
https://doi.org/10.1109/ICASSP.2019.8682912 |
[47] | Kim, T., Lee, J. and Nam, J. (2018) Sample-Level CNN Architectures for Music Auto-Tagging Using Raw Waveforms. IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, 15-20 April 2018, 366-370.
https://doi.org/10.1109/ICASSP.2018.8462046 |
[48] | Lee, J., Park, J., Kim, K.L., et al. (2017) Sample-Level Deep Convolutional Neural Networks for Music Auto-Tagging Using Raw Waveforms. 14th Sound & Music Computing Conference, At Espoo, 5-8 July 2017, 1-7. |
[49] | Lee, J., Kim, T., Park, J., et al. (2017) Raw Waveform-Based Audio Classification Using Sample-Level CNN Archi-tectures. 31st Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 1-5. |
[50] | Abdul, A., Chen, J., Liao, H.Y., et al. (2018) An Emotion-Aware Personalized Music Recommendation System Using a Convolutional Neural Networks Approach. Applied Sciences, 8, 1103. https://doi.org/10.3390/app8071103 |
[51] | Hewitt, C. and Gunes, H. (2018) CNN-Based Facial Affect Analysis on Mobile Devices. |
[52] | 汤敬浩, 杜炜, 朱月俊. 深度学习在音乐推荐中的应用[J]. 计算机产品与流通, 2017(7): 203-205. |
[53] | 汤敬浩. 基于深度学习的音乐推荐系统[D]: [硕士学位论文]. 北京: 北京邮电大学, 2018. |
[54] | Wang, X. and Wang, Y. (2014) Improving Content-Based and Hybrid Music Recommendation Using Deep Learning. Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, 3-7 November 2014, 627-636.
https://doi.org/10.1145/2647868.2654940 |
[55] | Li, Y., Wang, H., Liu, H. and Chen, B. (2017) A Study on Content-Based Video Recommendation. IEEE International Conference on Image Processing, Beijing, 17-20 September 2017, 4581-4585.
https://doi.org/10.1109/ICIP.2017.8297150 |
[56] | 李南星, 盛益强, 倪宏. 用于个性化推荐的条件卷积隐因子模型[J/OL]. 计算机工程, 1-10. 2019-06-01. |
[57] | 蔡念, 刘广聪, 蔡红丹. 改进矩阵分解与卷积神经网络结合的推荐模型[J/OL]. 计算机工程与应用, 1-8. 2019-05-30. |
[58] | 王海艳, 董茂伟. 基于动态卷积概率矩阵分解的潜在群组推荐[J]. 计算机研究与发展, 2017, 54(8): 1853-1863. |
[59] | 冯楚滢, 司徒国强, 倪玮隆. 协同深度学习推荐算法研究[J]. 计算机系统应用, 2019, 28(1): 169-175. |
[60] | 曾旭禹, 杨燕, 王淑营, 何太军, 陈剑波. 一种基于深度学习的混合推荐算法[J]. 计算机科学, 2019, 46(1): 126-130. |
[61] | 张光荣, 王宝亮, 侯永宏. 融合标签的实值条件受限波尔兹曼机推荐算法[J]. 计算机科学与探索, 2019, 13(1): 138-146. |
[62] | 刘康迪. 基于深度学习的电影推荐系统研究与应用[D]: [硕士学位论文]. 北京: 北京工业大学, 2018. |
[63] | 沈学利, 赫辰皓, 孟祥福. 受限玻尔兹曼机与加权Slope One的混合推荐算法研究[J/OL]. 计算机应用研究, 1-5. 2019-05-22. |
[64] | Zhang, H., Yang, H., Huang, T. and Zhan, G. (2017) DBNCF: Personalized Courses Recommendation System Based on DBN in MOOC Environment. International Symposium on Educational Technology, Hong Kong, 27-29 June 2017, 106-108. https://doi.org/10.1109/ISET.2017.33 |
[65] | Cui, H. and Qin, X. (2015) The Video Recommendation System Based on DBN. IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, 26-28 October 2015, 1016-1021. |
[66] | 黄兰. 基于DBN分类的协同过滤推荐算法研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆大学, 2017. |
[67] | 周悦芝, 张迪. 近端云计算: 后云计算时代的机遇与挑战[J]. 计算机学报, 2019, 42(4): 677-700. |
[68] | 林晖, 于孟洋, 田有亮, 黄毅杰. 移动云计算中基于动态博弈和可靠推荐的传递信誉机制[J]. 通信学报, 2018, 39(5): 85-93. |
[69] | 程淑玉. 基于大数据的云计算网络协同创新平台的研究[J]. 安徽理工大学学报(自然科学版), 2017, 37(3): 72-78. |
[70] | Guedes, T., Jesus, L.A., Kary, A.C., Oca?a, S., et al. (2019) Provenance-Based Fault Tolerance Technique Recommendation for Cloud-Based Scientific Workflows: A Practical Approach. Cluster Computing, 1, 1-26.
https://doi.org/10.1007/s10586-019-02920-6 |
[71] | Chen, J., Li, K., Rong, H., et al. (2018) A Disease Diagnosis and Treatment Recommendation System Based on Big Data Mining and Cloud Computing. Information Sciences, 1-5. https://doi.org/10.1016/j.ins.2018.01.001 |
[72] | 刘建勋, 石敏, 周栋, 唐明董, 张婷婷. 基于主题模型的Mashup标签推荐方法[J]. 计算机学报, 2017, 40(2): 520-534. |
[73] | 游静, 冯辉, 孙玉强. 云环境下基于协同推荐的信任评估与服务选择[J]. 计算机科学, 2016, 43(5): 140-145. |
[74] | Muthusankar, D., Kalaavathi, B. and Kaladevi, P. (2018) High Performance Feature Selection Algorithms Using Filter Method for Cloud-Based Recommendation System. Cluster Computing, 1-12.
https://doi.org/10.1007/s10586-018-1901-0 |
[75] | Zhang, F., Ma, H., Peng, L., et al. (2017) Recommendation Algorithm of Cloud Computing System Based on Random Walk Algorithm and Collaborative Filtering Model. 3rd International Conference on Social Sci-ence, Management and Economics, Guangzhou, 13-14 May 2017, 79-81. https://doi.org/10.12783/dtssehs/ssme2017/13003 |
[76] | 汪峰坤, 任海鹏. 云计算在健康体检项智能推荐系统中的应用与设计[J]. 绥化学院学报, 2018, 38(2): 152-154. |
[77] | Zhou, T., Chen, L. and Shen, J. (2017) Movie Recommendation System Employing the User-Based CF in Cloud Computing. IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing, Guangzhou, 21-24 July 2017, 46-50.
https://doi.org/10.1109/CSE-EUC.2017.194 |
[78] | Hu, H. and Chen, T. (2016) Design and Implementation of Agricultural Produc-tion and Market Information Recommendation System Based on Cloud Computing. International Conference on Intelligent Computa-tion Technology & Automation, Nanchang, 14-15 June 2015, 367-370. https://doi.org/10.1109/ICICTA.2015.99 |
[79] | Su, J., Huang, Y., Lv, G., et al. (2016) A Framework Research of Power Grid Knowledge Recommendation and Situation Reasoning Based on Cloud Computing and CEP. IEEE International Conference on Cyber Security & Cloud Computing, Beijing, 25-27 June 2016, 79-83. https://doi.org/10.1109/CSCloud.2016.14 |
[80] | Bhaskaran, S. and Santhi, B. (2017) An Efficient Personalized Trust Based Hybrid Recommendation (TBHR) Strategy for e-Learning System in Cloud Computing. Cluster Computing, 1-13. https://doi.org/10.1007/s10586-017-1160-5 |
[81] | 应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13): 111-117. |
[82] | 王聪, 郑宜峰, 蒋精华, 任奎. 实现隐私保护个性化推荐服务[J]. Engineering, 2018, 4(1): 48-65. |
[83] | 蒋宗礼, 乔向梅. 基于差分隐私保护的模糊C均值聚类推荐[J]. 计算机系统应用, 2018, 27(10): 189-195. |
[84] | Yin, C., Shi, L., Sun, R., et al. (2019) Improved Collaborative Filtering Recommendation Algorithm Based on Differential Privacy Protec-tion. The Journal of Supercomputing, No. 7, 1-14. https://doi.org/10.1007/s11227-019-02751-7 |
[85] | 路应金, 杜素娟. 基于奇异值分解模型的在线实时推荐的隐私保护[J]. 电子科技大学学报(社科版), 2017, 19(2): 74-81. |
[86] | 彭慧丽, 张啸剑, 金凯忠. 基于差分隐私的社交推荐方法[J]. 计算机科学, 2017, 44(S1): 395-398+423. |
[87] | Yu, J., Kuang, Z., Yu, Z., et al. (2018) Privacy Setting Recommendation for Image Sharing. IEEE International Conference on Machine Learning & Applications, Orlando, 17-20 December 2018, 726-730.
https://doi.org/10.1109/ICMLA.2017.00-73 |
[88] | Wang, C., Zheng, Y., Jiang, J., et al. (2018) Toward Privacy-Preserving Per-sonalized Recommendation Services. Engineering, 4, 21-28. https://doi.org/10.1016/j.eng.2018.02.005 |
[89] | 何明, 常盟盟, 吴小飞. 一种基于差分隐私保护的协同过滤推荐方法[J]. 计算机研究与发展, 2017, 54(7): 1439-1451. |
[90] | 王利娥, 许元馨, 李先贤, 刘鹏. 移动商务推荐系统中的一种基于P2P的隐私保护策略[J]. 计算机科学, 2017, 44(9): 178-183. |
[91] | 王换换, 吴响, 俞啸, 胡俊峰. TopN推荐系统的差分隐私保护研究[J]. 中国科技论文, 2017, 12(20): 2326-2330. |
[92] | 郑剑, 王啸乾. 融合标签相似度的差分隐私矩阵分解推荐算法[J/OL]. 计算机应用研究, 1-6 2019-05-23. |
[93] | Zhao, Y., Li, D., Lv, Q., et al. (2018) A Scala-ble Algorithm for Privacy-Preserving Item-based Top-N Recommendation. |
[94] | Shin, H., Kim, S., Shin, J., et al. (2018) Privacy En-hanced Matrix Factorization for Recommendation with Local Differential Privacy. IEEE Transactions on Knowledge and Data Engi-neering, 30, 1770-1782.
https://doi.org/10.1109/TKDE.2018.2805356 |
[95] | Meng, X., et al. (2018) Towards Privacy Preserving Social Recommendation under Personalized Privacy Settings. World Wide Web, 1-29. |
[96] | Qi, L., et al. (2018) An Exception Handling Approach for Priva-cy-Preserving Service Recommendation Failure in a Cloud Environment. Sensors, 18, 2037. https://doi.org/10.3390/s18072037 |
[97] | Feng, P., Zhu, H., Liu, Y., et al. (2018) Differential Privacy Protection Recommendation Algorithm Based on Student Learning Behavior. IEEE 15th International Conference on e-Business Engineering, Xi’an, 12-14 October 2018, 285-288. https://doi.org/10.1109/ICEBE.2018.00054 |