全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同时间尺度下水资源配置效应
Effects of Time Scales on Water Resources Allocation

DOI: 10.12677/JWRR.2019.84038, PP. 324-334

Keywords: 水资源配置,IRAS模型,时间尺度,汉江流域
Water Resources Allocation
, IRAS Model, Time Scale, Hanjiang River Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

水资源配置是解决水资源时空分布不均的重要手段,而现有水资源配置研究中时间尺度相对单一,较少考虑到时间尺度的变化给配置方案带来的风险。针对此问题,本文以汉江流域中下游地区为研究对象,利用具有灵活调整计算时间步长功能的IRAS水资源配置模型,选择年、季、月三种时间尺度,分析不同时间尺度对水资源配置的影响。结果表明:不同地区由于水资源条件和系统调节能力不同,水资源配置具有时间尺度效应,在来水条件良好的区域,水资源配置的时间尺度效应不明显,而在水资源短缺且系统调节能力较弱区域,水资源配置的时间尺度效应比较敏感,这是由于长时间尺度配置条件平滑了来水与需水在时间上的变化性,降低了长时间尺度的配置结果的缺水率。本研究不仅将为确定水资源配置的适应性时间尺度提供依据,而且还可为新时期水资源的精细化配置和风险管理提供支撑。
The water resources allocation is an important means to solve the problem of uneven distribution of water resources in time and space. However, there are few studies on the effects of time scales on water resources allocation. The effects caused by the variation of time scale are often ignored and lead to underestimation of water shortage risks in water resources management. IRAS water resources allocation model which can adjust the time step flexibly to adapt to different time scales, is employed to the middle and lower reaches of the Hanjiang River basin as a case study. There are three types of time scales (year, season and month) to be chosen for discussing the effects of time scales on water resources allocation. The results show that the effects of time scales on water resources allocation mainly depend on water resources conditions and the regulating capacity of the water system. Water shortage is few to find in all three-time scales if the water resources are enough to satisfy the water demand. However, the effects of time scales on water resources allocation are more sensitive in areas with water shortage and weak regulating capacity of the water system. As the variability of water inflow and demand water can be smoothed at long-term scale, the water shortage ratio at long-term scale is lower than that at a short-term scale. The results of the study have not only analyzed the effects of time scales on water resources allocation, but also warned the risks of water resources management at different time scales.

References

[1]  王浩. 我国水资源合理配置的现状和未来[J]. 水利水电技术, 2006, 37(2): 7-14. WANG Hao. Current status and future trend of rational allocation of water resources in china. Water Resources and Hydropower Engineering, 2006, 37(2): 7-14. (in Chinese)
[2]  尹家波, 郭生练, 吴旭树, 等. 两变量设计洪水估计的不确定性及其对水库防洪安全的影响[J]. 水利学报, 2018, 49(6): 715-724. YIN Jiabo, GUO Shenglian, WU Xushu, et al. Uncertainty of bivariate design flood estimation and its impact on reservoir flood prevention. Journal of Hydraulic Engineering, 2018, 49(6): 715-724. (in Chinese)
[3]  刘德地, 郭生练, 郭海晋, 等. 实施最严格水资源管理制度面临的技术问题与挑战[J]. 水资源研究, 2014(3): 179-188. LIU Dedi, GUO Shenglian, GUO Haijin, et al. Technique controversies and challenges of applying the strictest water resources control system. Journal of Water Resources Research, 2014(3): 179-188. (in Chinese)
[4]  甘治国, 蒋云钟, 鲁帆, 等. 北京市水资源配置模拟模型研究[J]. 水利学报, 2008, 39(1): 91-95. GAN Zhiguo, JIANG Yunzhong, LU Fan, et al. Water resources deployment model for Beijing city. Journal of Hydraulic Engineering, 2008, 39(1): 91-95. (in Chinese)
[5]  刘德地, 陈晓宏. 咸潮影响区的水资源优化配置研究[J]. 水利学报, 2007, 38(9): 1050-1055. LIU Dedi, CEHN Xiaohong. Study on the optimal deployment of water resources in saltwater intrusion areas. Journal of Hydraulic Engineering, 2007, 38(9): 1050-1055. (in Chinese)
[6]  王维平, 陈芳, 范明元, 等. 滨海地区生态型水资源优化配置模型[J]. 水利学报, 2006, 37(8): 991-995. WANG Weiping, CEHN Fang, FAN Mingyuan, et al. Model for ecological oriented water resources optimal deployment in coastal area. Journal of Hydraulic Engineering, 2006, 37(8): 991-995. (in Chinese)
[7]  田晶, 郭生练, 刘德地, 等. 汉江流域中下游地区水资源多目标优化配置[J]. 水资源研究, 2018, 7(3): 223-235. TIAN Jing, GUO Shenglian, LIU Dedi, et al. Multi-Objective optimal allocation of water resources in the middle and lower reaches of Hanjiang River basin. Journal of Water Resources Research, 2018, 7(3): 223-235. (in Chinese)
[8]  樊尔兰, 李怀恩. 分层型水库水量水质综合优化调度的研究[J]. 水利学报, 1996(11): 33-38. FAN Erlan, LI Huaien. Optimal operation for stratified reservoir considering both water volume and quality. Journal of Hydraulic Engineering, 1996(11): 33-38. (in Chinese)
[9]  张守平, 魏传江, 王浩, 等. 流域/区域水量水质联合配置研究II实例应用[J]. 水利学报, 2014, 45(8): 938-949. ZHANG Shouping, WEI Chuanjiang, WANG Hao, et al. Basin/region water quality and quantity allocation II. Application. Journal of Hydraulic Engineering, 2014, 45(8): 938-949. (in Chinese)
[10]  V?R?SMARTY, C. J., GREEN, P., SALISBURY, J., et al. Global water resources: Vulnerability from climate change and population growth. Science, 2000, 289(5477): 284-288.
https://doi.org/10.1126/science.289.5477.284
[11]  MEKONNEN, M. M., HOEKSTRA, A. Y. Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): e1500323.
https://doi.org/10.1126/sciadv.1500323
[12]  MATROSOV, E. S., HAROU, J. J. and LOUCKS, D. P. A computationally efficient open-source water resource system simulator—Application to London and the Thames Basin. Environmental Modelling & Software, 2011, 26(12): 1599-1610.
https://doi.org/10.1016/j.envsoft.2011.07.013
[13]  TENNANT, D. L. Instream flow regimens for fish, wildlife, recreation, and related environmental resources. Fisheries Management and Ecology, 1976, 1(4): 6-10.
https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133