全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度神经网络的教育众筹成败预测
Prediction of Success or Failure of Educational Crowds Based on Deep Neural Network

DOI: 10.12677/CSA.2019.98173, PP. 1546-1553

Keywords: 教育众筹,成败预测,卷积神经网络,BP神经网络
Educational Crowdfunding
, Predicting the Success or Failure, Convolutional Neural Network, BP Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

教育众筹在一定程度上可以优化、检验教育课程,有效整合社会资源及教育资源,为地方缓解资金压力,如果众筹失败,将造成巨大的时间成本,因此对众筹项目结果进行预测研究具有重要意义。本文针对教育众筹的成败预测问题,将卷积神经网络和BP神经网络模型运用于多因素影响下的教育众筹成败预测中,利用卷积神经网络对纯文本信息进行网络训练;接着引入BP神经网络,综合考虑了文本、总价、以前公布项目的教师人数等七种因素的影响,获得了89.72%的测试正确率,并对影响众筹预测成败的三个主要因素进行了分析。
Educational crowdsourcing can optimize and test educational curricula to a certain extent, effectively integrate social and educational resources, and alleviate financial pressure for local governments. If crowdfunding fails, it will cause huge time costs. Therefore, it is of great significance to predict the results of crowdfunding projects. Aiming at the problem of predicting the success or failure of educational crowdfunding, this paper applies convolutional and neural network and BP neural network model to predict the success or failure of educational crowdfunding under the influence of multiple factors, and uses convolutional and neural network to train pure text information on the network; then introduces BP neural network, taking into account the influence of seven factors, such as text, total price and number of teachers of previously posted projects, and obtains the test accuracy of 89.3257%, and the impact of crowdsourcing forecast success or failure of the three main factors was analyzed.

References

[1]  黎明, 魏园园, 杨庆华. 浅议教育众筹模式发展[J]. 课程教育研究, 2016(22): 31-32.
[2]  杨开城, 李通德, 惠治儒, 等. 在线教育众筹的技术机制与学习神经元[J]. 现代远程教育研究, 2017(1): 51-58.
[3]  陈拓. 基于卷积神经网络的立体匹配技术研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2017.
[4]  朱灿. 基于GA-BP神经网络的奖励式众筹融资结果预测研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2017.
[5]  殷亚博, 王文忠, 等. 基于卷积神经网络和KNN的短文本分类算法研究[J]. 计算机工程, 2018, 44(7): 193-198.
[6]  Lecun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436.
https://doi.org/10.1038/nature14539
[7]  丁小刚. BP神经网络与卷积神经网络在文字识别中的应用研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2014.
[8]  Schmidhuber, J. (2015) Deep Learning in Neural Networks. Elsevier Science Ltd., Amsterdam.
[9]  Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014) A Convolutional Neural Network for Modelling Sentences.
[10]  众筹网站[EB/OL]. http://www.donorschoose.org

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133