全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

庐山森林土壤碳氮硫含量变化特征及影响因素
Variation Characteristic and Influencing Factors of Forest Soil Carbon, Nitrogen and Sulfur Contents in Mt. Lushan, East China

DOI: 10.12677/AG.2019.97070, PP. 660-669

Keywords: 庐山,森林土壤,碳氮硫,有机质,环境因子
Mt. Lushan
, Forest Soil, Carbon-Nitrogen-Sulfur, Organic Matter, Environmental Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究庐山森林土壤中N、C、S元素迁移转化的规律,本文在野外观察的基础上,选取了6个受人类活动干扰较小的采样点进行样品采集,并对其元素含量进行了测定与分析,结果表明:1) 庐山森林土壤中TN、TC、TS含量分别为0.03%~0.48%、0.18%~7.00%、0.02%~0.13%,TN、TC值变化幅度大,TS值变化幅度小;2) 除RZF采样点外,土壤剖面不同发生层TN、TC值随着深度的增加有显著的降低;RZF点分层不明显,故各层TN、TC值差异不显著;3) LL采样点因地形坡度大,土壤元素易被淋失,因此元素含量没有表现出与其他5处采样点相同的变化特征,即TN、TC值随着海拔上升而增加;4) 庐山森林土壤C/N值远小于适宜值25,也低于全国生态系统平均值,变化趋势与TN、TC一致;5) 土壤C/S值均小于200,有机硫矿化作用强。进一步讨论发现,庐山森林土壤生态系统中N、C、S元素的迁移转化主要受温度、地形、地表枯枝落叶量及植被类型影响。
In order to explore the law of the migration and transformation of N, C, S elements in the forest soil in Mt. Lushan, on the basis of field observation, selecting six sampling sites with less disturbed by human activities to collect soil samples and the element content was determined and analyzed in the laboratory. The results showed that: 1) The values of TN, TC and TS in Mt. Lushan forest soil were 0.03% - 0.48%, 0.18% - 7.00%, 0.02% - 0.13%. The variation of TN and TC values was large, while the variation of TS was small. 2) Except for the RZF sampling site, TN and TC values of different layers in soil profile decreased significantly with the increase of depth; the stratification of RZF soil profile was not obvious, so the TN and TC values of each layer had no significant difference. 3) The soil element of LL sampling site was prone to leaching due to the large topographic slope, so the element content did not present the same changing characteristics as the other 5 sampling sites. The TN and TC values of these 5 sampling sites increased with the elevation. 4) The C/N value of Mt. Lushan forest soil was far less than the appropriate value 25 and lower than the average value of the national ecosystem. Its change trend was consistent with TN and TC. 5) C/S value was less than 200, and organic sulfur mineralization was strong. It was found that the migration and transformation of N, C and S elements in Mt. Lushan forest soil ecosystem were mainly affected by the temperature, topography, amount of forest litter and vegetation type.

References

[1]  王棣, 耿增超, 佘雕, 等. 秦岭典型林分布土壤活性有机碳及碳储量垂直分布特征[J]. 应用生态学报, 2014, 25(6): 1569-1577.
[2]  陈富荣, 梁红霞, 邢润华, 等. 安徽省土壤固碳潜力及有机碳汇(源)研究[J]. 土壤通报, 2017, 48(4): 843-851.
[3]  程先富, 史学正, 于东升, 等. 兴国县森林土壤有机碳库及其与环境因子的关系[J]. 地理研究, 2004, 23(2): 211-217.
[4]  白小芳, 徐福利, 王渭玲, 等. 华北落叶松人工林土壤氮碳磷生态化学计量特征[J]. 中国水土保持科学, 2015, 13(6): 68-75.
[5]  沙聪, 王木兰, 姜玥璐, 等. 红树林土壤pH和其他土壤理化性质之间的相互作用[J]. 科学通报, 2018, 63(2): 2745-2756.
[6]  孟延, 周建斌, 郝平琦, 等. 土壤无机碳研究进展及意义[J]. 北方农业学报, 2017, 45(3): 54-57.
[7]  Lal, R. (2005) Forest Soils and Carbon Sequestration. Forest Ecology and Management, 220, 242-258.
https://doi.org/10.1016/j.foreco.2005.08.015
[8]  张鹏, 张涛, 陈年来. 祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J]. 应用生态学报, 2009, 20(3): 518-524.
[9]  彭少麟, 李跃林, 任海, 等. 全球变化条件下的土壤呼吸效应[J]. 地球科学进展, 2002, 17(5): 705-713.
[10]  Tisdale, S.L., Nelson, W.L. and Beaton, J.D. (1985) Soil Fertility and Fertilizers. Collier Macmillan Publishers, London.
[11]  李新华, 刘景双, 孙志高, 等. 三江平原小叶章湿地生态系统硫的生物地球化学循环[J]. 生态学报, 2007, 27(6): 2199-2207.
[12]  Solomon, D., Lehmann, J., Tekalign, M., et al. (2001) Sulfur Fractions in Particle-Size Separates of the Sub-Humid Ethiopian Highlands as Influenced by Land Use Changes. Geoderma, 102, 41-59.
https://doi.org/10.1016/S0016-7061(00)00103-8
[13]  伍光和, 王乃昂, 胡双熙, 等. 自然地理学(第四版)[M]. 北京: 高等教育出版社, 2008.
[14]  Wang, J.K., Solomon, D., Lehman, J., et al. (2006) Soil Organic Sulfur Forms and Dynamics in the Great Plains of North America as Influenced by Long-Term Cultivation and Climate. Geoderma, 133, 160-172.
https://doi.org/10.1016/j.geoderma.2005.07.003
[15]  Hartiley, I.P., Heinemeyer, A., Evans, S.P., et al. (2007) The Effect of Soil Warming on Bulk Soil vs. Rhizosphere Respiration. Global Change Biology, 13, 2654-2667.
https://doi.org/10.1111/j.1365-2486.2007.01454.x
[16]  Hanson, P.J., Edwards, N.T., Garten, C.T., et al. (2000) Separating Root and Soil Microbial Contributions to Soil Respiration: A Review of Methods and Observations. Biogeochemistry, 48, 115-146.
https://doi.org/10.1023/A:1006244819642
[17]  Schlesinger, W.H. and Andrews, J.A. (2000) The Potential Effects of Elevated CO2 and Climate Change on Tropical Forest Soils and Biogeochemical Cycling. Climatic Change, 39, 337-361.
[18]  张春华, 王宗明, 居为民, 等. 松嫩平原玉米带土壤碳氮比的时空变异特征[J]. 环境科学, 2011, 32(5): 1407-1414.
[19]  朱晓芳, 关雪晴, 付晶莹. 庐山土壤全氮含量及其影响因素初探[J]. 安徽农业科学, 2008, 36(16): 6868-6869.
[20]  杨益, 牛得草, 文海燕, 等. 贺兰山不同海拔土壤颗粒有机碳、氮特征[J]. 草业学报, 2012, 21(3): 54-60.
[21]  向成华, 栾军伟, 骆宗诗, 等. 川西沿海拔梯度典型植被类型土壤活性有机碳分布[J]. 生态学报, 2010, 30(4): 1025-1034.
[22]  周志文, 潘剑君, 居为民, 等. 神农架不同坡位3种林型土壤碳氮比分布特征[J]. 水土保持学报, 2014, 28(4): 211-217.
[23]  Post, W.M., King, A.M. and Wullschleger, S.D. (1996) Soil Organic Matter Models and Global Estimates of Soil Organic Carbon. In: Powlson, D.S., et al., Eds., Evaluation of Soil Organic Matter Models, Springer, Berlin, 201-224.
https://doi.org/10.1007/978-3-642-61094-3_14
[24]  周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.
[25]  王海荣, 杨忠芳. 土壤无机碳研究进展[J]. 安徽农业科学, 2011, 39(35): 21735-21739.
[26]  杨黎芳, 李贵桐. 土壤无机碳研究进展[J]. 土壤通报, 2011, 42(4): 986-990.
[27]  刘颖, 韩士杰. 长白山四种森林土壤呼吸的影响因素[J]. 生态环境学报, 2009, 18(3): 1061-1065.
[28]  Jia, B., Zhou, G., Wang, Y., et al. (2006) Effects of Temperature and Soil Water-Content on Soil Respiration of Grazed and Ungrazed Leymus chinensis Steppes, Inner Mongolia. Journal of Arid Environments, 67, 60-76.
https://doi.org/10.1016/j.jaridenv.2006.02.002
[29]  Liu, Q., Peng, S.L., Bi, H., et al. (2004) The Decomposition of Foliar Litter Intropical and Subtropical Forests. Acta Scientiarum Naturalium Universitatis, 43, 86-89.
[30]  王军静, 白军红, 赵庆庆, 等. 哈拉海湿地芦苇沼泽土壤碳、氮和磷含量的剖面特征[J]. 湿地科学, 2014, 12(6): 690-696.
[31]  刘潇潇, 王钧, 曾辉. 中国温带草地土壤硫的分布特征及其与环境因子的关系[J]. 生态学报, 2016, 36(24): 7919-7928.
[32]  刘伟, 程积民, 高阳, 等. 黄土高原草地土壤有机碳分布及其影响因素[J]. 土壤学报, 2012, 49(1): 68-76.
[33]  张贤应, 於忠祥, 葛承文, 等. 庐山土壤硫组分分布特征研究[J]. 安徽农学通报, 1999, 5(1): 24-27.
[34]  李男, 肖化云, 陈永忠, 等. 江西省表层土壤和苔藓硫含量及硫同位素组成对比研究[J]. 环境科学, 2013, 34(10): 3782-3787.
[35]  宋彦彦, 史宝库, 张言, 等. 长白山8种林型土壤有机碳和全氮的质量分数及垂直分布特征[J]. 东北林业大学学报, 2014, 42(12): 94-97.
[36]  祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 2011, 31(18): 5207-5216.
[37]  朱红霞, 王艳玲, 张耀鸿, 等. 紫金山不同海拔高度土壤的碳氮分布特征[J]. 南京信息工程大学学报(自然科学版), 2012, 4(4): 326-329.
[38]  Tian, H., Chen, G., Zhang, C., et al. (2010) Pattern and Variation of C: N: P Ratios in China’s Soils: A Synthesis of Observational Data. Biogeochemistry, 98, 139-151.
https://doi.org/10.1007/s10533-009-9382-0
[39]  Solomon, D., Lehmann, J., Kinyangi, J., et al. (2009) Anthropogenic and Climate Influences on Biogeochemical Dynamics and Molecular-Level Speciation of Soil Sulfur. Ecological Applications, 19, 989-1002.
https://doi.org/10.1890/08-0095.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133