全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2019 

中国人口特征对经济发展的影响
The Influence of Chinese Population Features on Economic Development

DOI: 10.12677/FIN.2019.94047, PP. 390-408

Keywords: 线性回归,多项式回归,非线性回归,多元回归,PCA + 多元线性回归,逐步回归,时间序列分析,Linear Regression, Polynomial Regression, Nonlinear Regression, Multiple Regression, PCA + Multiple Regression, Stepwise Regression, Time Series Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要关注潜在的人口因素与经济指标之间的关系,以期提供经济发展的建议。首先,对原始数据进行预处理,包括数据获取、截取、重命名、标准化等,使数据易于读取和识别。然后用相关分析来判断因素存在的正或负相关影响,以及哪个因素是显著的,哪个因素是不显著的。之后,使用线性回归、多项式回归、非线性回归三种方法来探索一个因素与经济指标之间的关系,找到更好的匹配方法。最后通过使用四种方法进行多因素分析,包括直接使用多元线性回归,主成分分析(PCA) + 多元线性回归,逐步回归,时间序列,找到一个最为合适的回归方法。
This paper mainly focuses on the relationship between the potential factors with economic indices in order to provide developing suggestions. First, we preprocess the original data, including data reading, deleting, rename, standardization and so on, to make the data easily read and recognized. ?Then, we use correlation analysis to tell which factor is positive and negative and the death is not a strong linear factor to economic indexes, while others are. After that, we use three methods to ex-plore the relationship between one factor and one of the economic indexes, including linear re-gression, polynomial regression as well as nonlinear regression, and we find out utilizing the re-sidual is the least to determine the better way to match the relationship. Finally, we use five me-thods to do the multiple factors analysis, including directly using multiple regression, PCA + mul-tiple regression, stepwise regression, time series analysis, to determine the best model for pre-dicting the economic development among them.

References

[1]  胡鞍钢. 社会与发展——中国社会发展地区差异研究[M]. 杭州: 浙江人民出版社, 2000.
[2]  何晓群, 刘文卿. 应用回归分析[M]. 第3版. 北京: 中国人民大学出版社, 2011.
[3]  付凌晖, 王惠文. 多项式回归的建模方法比较研究[J]. 数理统计与管理, 2004, 23(1): 48-52.
[4]  Bates, W. 非线性回归分析及其应用[M]. 北京: 中国统计出版社, 1998.
[5]  高慧璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005.
[6]  李昕燃, 蒋文浩, 张力文. 基于主成分分析法的宏观经济分析[J]. 现代营销(经营版), 2019(6): 82.
[7]  崔腾飞. 逐步回归分析下山东省税收与GDP的关系[J]. 现代商贸工业, 2019, 40(16): 119-120.
[8]  宋平, 邱燕玲. 基于时间序列分析青海省GDP预测[J]. 时代金融, 2018(15): 47-48+54.
[9]  Hoaglin, D.C., Mosteller, F. and Tukey, J.W. 探索性数据分析[M]. 北京: 中国统计出版社, 2007.
[10]  邓子元. 三年大饥荒原因探析[J]. 农村经济与科技, 2019, 30(1): 55-67.
[11]  Pedhazur, E.J. (1982) Multiple Regression in Behavioral Research: Explanation and Prediction. Second Version, Holt, Rinehart and Winston, New York.
[12]  Abdi, H. and Williams, L.J. (2010) Principal Component Analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
https://doi.org/10.1002/wics.101
[13]  王燕. 应用时间序列分析[M]. 第4版. 北京: 中国人民大学出版社, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133