全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

功能性近红外光谱成像(fNIRS)在决策中的应用
The Application of Functional Near-Infrared Spectroscopy in Decision Making Research

DOI: 10.12677/AP.2019.98176, PP. 1435-1445

Keywords: 功能性近红外光谱成像,决策,神经机制
Functional Near-Infrared Spectroscopy
, Decision Making, Neural Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

功能性近红外光谱成像(fNIRS)现已逐渐成为探究决策的神经机制的一项重要的研究工具,利用具有高生态效度的fNIRS技术考察决策背后的神经机制或许可以真正解答“人类是如何做出决策”这一科学问题。本文首先总结fNIRS研究决策神经机制的优势,其次梳理了决策领域应用fNIRS的研究进展,目前已经在风险决策、跨期决策、社会决策和消费者决策等领域探究了决策的性别差异、人格差异、群体差异等现象及其神经机制。最后指出未来可以充分利用fNIRS的优势开展多模态、特殊群体等更为广泛的研究,优化分析方法,进一步阐释人类决策过程的心理机制。
Functional near-infrared spectroscopy (fNIRS) has become an important research tool for ex-ploring the neural mechanisms of decision making gradually. The scientific answer of “how hu-man beings make decisions” could be examined by neural mechanism under decision making, which can be measured by fNIRS with higher ecological validity. This paper first summarizes the advantages of fNIRS when exploring neural mechanisms under decision making, and then we review the progress of fNIRS research in decision making field. At present, researchers have ex-plored the phenomenon and neural mechanisms of gender differences, personality differences, group differences in risk decision making, inter-temporal choice, social decision making and consumer decision making. Finally, it points out that combining with other neuroimage tech-nologies, conducting research with abnormal individuals, and optimizing analytical methods by taking advantages of fNIRS could explain the psychological mechanism of human decision mak-ing in the future.

References

[1]  蔡厚德, 张权, 蔡琦, 陈庆荣(2012). 爱荷华博弈任务(IGT)与决策的认知神经机制. 心理科学进展, 20(9), 1401-1410.
[2]  方平, 陈满琪, 姜媛(2009). 决策的脑认知神经机制. 心理科学, 32(3), 640-642.
[3]  郭欢, 杜莎, 朱绘霖, 申荷永(2017). 近红外光谱成像的多人同步交互记录. 心理技术与应用, 5(4), 237-244.
[4]  惠泺潼(2017). 群体内群体外人际合作与冲突的近红外光学成像研究. 硕士论文, 天津: 天津师范大学.
[5]  贾尧(2016). 基于面孔与收益对信任博弈决策的影响fNIRS的信任脑机制研究. 硕士论文, 金华: 浙江师范大学.
[6]  李纾, 梁竹苑, 孙彦(2012). 人类决策: 基础科学研究中富有前景的学科. 中国科学院院刊, 27(s1), 52-65.
[7]  利振华, 窦凯, 聂衍刚(2018). 远离“诱惑”: 预先承诺对跨期决策的调控机制及其神经基础. 心理科学进展, 26(10), 163-171.
[8]  刘宝根, 周兢, 李菲菲(2011). 脑功能成像的新方法——功能性近红外光谱技术(fNIRS). 心理科学, 34(4), 943-949.
[9]  刘长江, 李纾(2007). 神经经济学:迈向脑科学的决策科学. 心理科学, 30(2), 482-484.
[10]  马庆国, 沈强, 李典典, 王凯(2009). 社会神经经济学: 社会决策和博弈的神经学基础. 浙江大学学报(人文社会科学版), 39(2), 53-63.
[11]  王云强, 郭本禹(2017). 大脑是如何建立道德观念的: 道德的认知神经机制研究进展与展望. 科学通报, 62(25), 2867-2875.
[12]  徐四华, 方卓, 饶恒毅(2013). 真实和虚拟金钱奖赏影响风险决策行为. 心理学报, 45(8), 874-886.
[13]  叶佩霞, 朱睿达, 唐红红, 买晓琴, 刘超(2017). 近红外光学成像在社会认知神经科学中的应用. 心理科学进展, 25(5), 731-741.
[14]  庄锦英(2006). 决策心理学. 上海: 上海教育出版社.
[15]  Baker, M. D., & Maner, J. K. (2009). Male Risk-Taking as a Context-Sensitive Signaling Device. Journal of Experimental Social Psychology, 45, 1136-1139.
https://doi.org/10.1016/j.jesp.2009.06.006
[16]  Bembich, S., Clarici, A., Vecchiet, C., Baldassi, G., Cont, G., & Demarini, S. (2014). Differences in Time Course Activation of Dorsolateral Prefrontal Cortex Associated with Low or High Risk Choices in a Gambling Task. Frontiers in Human Neuroscience, 8, 464.
https://doi.org/10.3389/fnhum.2014.00464
[17]  Bornovalova, M. A., Cashman-Rolls, A., O’Donnel, J. M., Ettinger, K., Richards, J. B., de Wit, H., & Lejuez, C. W. (2009). Risk Taking Differences on a Behavioral Task as a Function of Potential Reward/Loss Magnitude and Individual Differences in Impulsivity and Sensation Seeking. Pharmacology Biochemistry and Behavior, 93, 258-262.
https://doi.org/10.1016/j.pbb.2008.10.023
[18]  Cazzell, M., Li, L., Lin, Z. J., Patel, S. J., & Liu, H. (2012). Comparison of Neural Correlates of Risk Decision Making between Genders: An Exploratory fNIRS Study of the Balloon Analogue Risk Task (BART). Neuroimage, 62, 1896-1911.
https://doi.org/10.1016/j.neuroimage.2012.05.030
[19]  Dean, A. C., Sugar, C. A., Hellemann, G., & London, E. D. (2011). Is All Risk Bad? Young Adult Cigarette Smokers Fail to Take Adaptive Risk in a Laboratory Decision-Making Test. Psychopharmacology, 215, 801-811.
https://doi.org/10.1007/s00213-011-2182-y
[20]  Hammers, D. B., & Suhr, J. A. (2010). Neuropsychological, Impulsive Personality, and Cerebral Oxygenation Correlates of Undergraduate Polysubstance Use. Journal of Clinical Experimental Neuropsychology, 32, 599-609.
https://doi.org/10.1080/13803390903379599
[21]  Heinzel, S., Haeussinger, F. B., Hahn, T., Ehlis, A. C., Plichta, M. M., & Fallgatter, A. J. (2013). Variability of (Functional) Hemodynamics as Measured with Simultaneous fNIRS and fMRI during Intertemporal Choice. Neuroimage, 71, 125-134.
https://doi.org/10.1016/j.neuroimage.2012.12.074
[22]  Holper, L., & Murphy, R. O. (2014). Hemodynamic and Affective Correlates Assessed during Performance on the Columbia Card Task (CCT). Brain Imaging and Behavior, 8, 517-530.
https://doi.org/10.1007/s11682-013-9265-9
[23]  Holper, L., Scholkmann, F., & Wolf, M. (2014). The Relationship between Sympathetic Nervous Activity and Cerebral Hemodynamics and Oxygenation: A Study Using Skin Conductance Measurement and Functional Near-Infrared Spectroscopy. Behavioural Brain Research, 270, 95-107.
https://doi.org/10.1016/j.bbr.2014.04.056
[24]  Holper, L., ten Brincke, R. H., Wolf, M., & Murphy, R. O. (2014). fNIRS Derived Hemodynamic Signals and Electrodermal Responses in a Sequential Risk-Taking Task. Brain Research, 1557, 141-154.
https://doi.org/10.1016/j.brainres.2014.02.013
[25]  Holper, L., Wolf, M., & Tobler, P. N. (2014). Comparison of Functional Near-Infrared Spectroscopy and Electrodermal Activity in Assessing Objective versus Subjective Risk during Risky Financial Decisions. Neuroimage, 84, 833-842.
https://doi.org/10.1016/j.neuroimage.2013.09.047
[26]  J?bsis-vander Vliet, F. F. (1999). Discovery of the Near-Infrared Window into the Body and the Early Development of Near-Infrared Spectroscopy. Journal of Biomedical Optics, 4, 392-396.
https://doi.org/10.1117/1.429952
[27]  Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for Behavioral Economics. American Economic Review, 93, 1449-1475.
https://doi.org/10.1257/000282803322655392
[28]  Kahneman, D., & Tversky, A. (1972). Subjective Probability: A Judgment of Representativeness. Cognitive Science, 3, 25-48.
https://doi.org/10.1007/978-94-010-2288-0_3
[29]  Kathleen Holmes, M., Bearden, C. E., Barguil, M., Fonseca, M., Monkul, E. S., Nery, F. G. et al. (2009). Conceptualizing Impulsivity and Risk Taking in Bipolar Disorder: Importance of History of Alcohol Abuse. Bipolar Disorders, 11, 33-40.
https://doi.org/10.1111/j.1399-5618.2008.00657.x
[30]  Kim, J.-Y., Kim, K.-I., Han, C.-H., Lim, J.-H., & Im, C.-H. (2017). Estimating Consumers’ Subjective Preference Using Functional near Infrared Spectroscopy: A Feasibility Study. Journal of Near Infrared Spectroscopy, 24, 433-441.
https://doi.org/10.1255/jnirs.1242
[31]  Kopton, I. M., & Kenning, P. (2014). Near-Infrared Spectroscopy (nirs) as a New Tool for Neuroeconomic Research. Frontiers in Human Neuroscience, 8, 549.
https://doi.org/10.3389/fnhum.2014.00549
[32]  Lee, R. F., Dai, W., & Jones, J. (2012). Decoupled Circu-lar-Polarized Dual-Head Volume Coil Pair for Studying Two Interacting Human Brains with Dyadic fMRI. Magnetic Resonance in Medicine, 68, 1087.
https://doi.org/10.1002/mrm.23313
[33]  Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L. et al. (2002). Evaluation of a Behavioral Measure of Risk Taking: The Balloon Analogue Risk Task (Bart). Journal of Experimental Psychology: Applied, 8, 75-84.
https://doi.org/10.1037//1076-898X.8.2.75
[34]  Li, L., Cazzell, M., Zeng, L., & Liu, H. (2017). Are There Gender Differences in Young vs. Aging Brains under Risk Decision-Making? An Optical Brain Imaging Study. Brain Imaging and Behavior, 11, 1085-1098.
https://doi.org/10.1007/s11682-016-9580-z
[35]  Lin, L. Z., Li, L., Cazzell, M., & Liu, H. (2013). Monitoring of Human Brain Functions in Risk Decision-Making Task by Diffuse Optical Tomography Using Voxel-Wise General Linear Model. In Conference on Photonic Therapeutics and Diagnostics IX (Vol. 8565, p. 856555). San Francisco: The International Society for Optics and Photonics (SPIE).
https://doi.org/10.1117/12.2005538
[36]  Lin, X., Xu, S., Ieong, H. F., & Yuan, Z. (2017). Optical Mapping of Prefrontal Activity in Pathological Gamblers. Applied Optics, 56, 5948-5953.
https://doi.org/10.1364/AO.56.005948
[37]  Lin, Z. J., Li, L., Cazzell, M., & Liu, H. (2014). Atlas-Guided Volumetric Diffuse Optical Tomography Enhanced by Generalized Linear Model Analysis to Image Risk Decision-Making Responses in Young Adults. Human Brain Mapping, 35, 4249-4266.
https://doi.org/10.1002/hbm.22459
[38]  Luu, S., & Chau, T. (2009). Decoding Subjective Preference from Single-Trial Near-Infrared Spectroscopy Signals. Journal of Neural Engineering, 6, Article ID: 016003.
https://doi.org/10.1088/1741-2560/6/1/016003
[39]  Ono, Y., Kikuchi, M., Hirosawa, T., Hino, S., Nagasawa, T., Hashimoto, T., & Minabe, Y. (2015). Reduced Prefrontal Activation during Performance of the Iowa Gambling Task in Patients with Bipolar Disorder. Psychiatry Research, 233, 1-8.
https://doi.org/10.1016/j.pscychresns.2015.04.003
[40]  Piva, M., Zhang, X., Noah, J. A., Chang, S. W. C., & Hirsch, J. (2017). Distributed Neural Activity Patterns during Human-to-Human Competition. Frontiers in Human Neuroscience, 11, 571.
https://doi.org/10.3389/fnhum.2017.00571
[41]  Rao, H., Korczykowski, M., Pluta, J., Hoang, A., & Detre, J. A. (2008). Neural Correlates of Voluntary and Involuntary Risk Taking in the Human Brain: An fMRI Study of the Balloon Analog Risk Task (BART). Neuroimage, 42, 902-910.
https://doi.org/10.1016/j.neuroimage.2008.05.046
[42]  Rilling, J. K., & Sanfey, A. G. (2011). The Neuroscience of Social Decision-Making. Annual Review Psychology, 62, 23-48.
https://doi.org/10.1146/annurev.psych.121208.131647
[43]  Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Pavia, J. M., Wolf, U. et al. (2013). A Review on Continuous Wave Functional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology. Neuroimage, 85, 6-27.
https://doi.org/10.1016/j.neuroimage.2013.05.004
[44]  Shimokawa, T., Kinoshita, K., Miyagawa, K., & Misawa, T. (2012). A Brain Information-Aided Intelligent Investment System. Decision Support Systems, 54, 336-344.
https://doi.org/10.1016/j.dss.2012.05.041
[45]  Shimokawa, T., Suzuki, K., Misawa, T., & Miyagawa, K. (2009). Predictability of Investment Behavior from Brain Information Measured by Functional Near-Infrared Spectroscopy: A Bayesian Neural Network Model. Neuroscience, 161, 347-358.
https://doi.org/10.1016/j.neuroscience.2009.02.079
[46]  Suhr, J., & Hammers, D. (2010). Who Fails the Iowa Gambling Test (IGT)? Personality, Neuropsychological, and Near-Infrared Spectroscopy Findings in Healthy Young Controls. Archives of Clinical Neuropsychology, 25, 293-302.
https://doi.org/10.1093/arclin/acq017
[47]  Tang, H., Mai, X., Wang, S., Zhu, C., Krueger, F., & Liu, C. (2016). Interpersonal Brain Synchronization in the Right Temporo-Parietal Junction during Face-to-Face Economic Exchange. Social Cognitive and Affective Neuroscience, 11, 23-32.
https://doi.org/10.1093/scan/nsv092
[48]  Xue, G., Chen, C., Lu, Z. L., & Dong, Q. (2010). Brain Imaging Tech-niques and Their Applications in Decision-Making Research. Acta Psychologica Sinica, 42, 120-137.
https://doi.org/10.3724/SP.J.1041.2010.00120
[49]  Yang, Z. Y., & Chen, H. C. (2013). Applying Near-Infrared Spectroscopy in Cognitive Neuroscience. Journal of Neuroscience & Neuroengineering, 2, 231-242.
https://doi.org/10.1166/jnsne.2013.1053
[50]  Zhang, M., Liu, T., Pelowski, M., Jia, H., & Yu, D. (2017). Social Risky Decision-Making Reveals Gender Differences in the TPJ: A Hyperscanning Study Using Functional Near-Infrared Spectroscopy. Brain and Cognition, 119, 54-63.
https://doi.org/10.1016/j.bandc.2017.08.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133