全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳量子点–高锰酸钾–鲁米诺化学发光体系测定食品包装材料中的银溶出量
Determination of Leaching Silver in Food Packaging Materials by Carbon Dots KMnO4-Luminol Chemiluminescence System

DOI: 10.12677/AAC.2019.93020, PP. 153-159

Keywords: 化学发光法,Eu-CDs,鲁米诺,Ag+,食品包装材料
Chemiluminescence
, Eu-CDs, Luminol, Ag+, Food Packaging Materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过一步水热法制备了铕掺杂的碳量子点(Eu-CDs),在磷酸盐缓冲介质中,Eu-CDs对鲁米诺–高锰酸钾化学发光体系具有增敏作用,而Ag+对Eu-CDs-Luminol-KMnO4化学发光体系有明显增强作用,据此建立了化学发光法测定痕量Ag+的新方法,线性范围是0.5~30 ng?mL?1,方法检出限是0.08 ng?mL?1,相对标准偏差为2.1% (n = 11, c = 15 ng?mL?1)。该方法成功应用于食品包装材料中银离子的检测,回收率在91%~117%之间。
Europiumdoped Carbondots (Eu-CDs) was prepared through one step hydrothermal method. In phosphate buffer medium, Eu-CDs has great sensibilization to the Luminol-KMnO4 chemilumines-cence. Furthermore, it was found that Ag+ could enhance the Eu-CDs-Luminol-KMnO4 chemilumi-nescence system. Based on this, a new method for the determination of trace Ag+ by chemilumi-nescence was established. The linear range was 0.5 - 30 ng?mL?1. The detection limit was 0.08 ng?mL?1; the relative standard deviation was 2.1% (n = 11, c = 15 ng?mL?1). The authors successfully applied this method to the detection of silver ions in food antibacterial packaging boxes, and the recovery rate was between 91% and 117%.

References

[1]  Cantarero, A., Gómez, M.M., Cámara, C. and Palacios, M.A. (1994) On-Line Preconcentration and Determination of Trace Platinum by Flow-Injection Atomic Absorption Spectrometry. Analytica Chimica Acta, 296, 205-211.
https://doi.org/10.1016/0003-2670(94)80264-5
[2]  Environmental Protection Agency (EPA) (1980) Ambient Water Quality Criteria for Silver. Office of Water Regulation and Standards, Washington DC.
[3]  Xiang, G., Ma, Y., Yang, J., et al. (2015) A Surface Ion Imprinted Magnetic Silica Sorbent for the Separation and Determination of Leaching Silver in Antibacterial Food Contact Products. Canadian Journal of Chemistry, 93, 621-625.
https://doi.org/10.1139/cjc-2014-0428
[4]  Xiang, G., Wang, Y., Zhang, H., et al. (2017) Polyelectrolyte Multilayers on Mag-netic Silica as a New Sorbent for the Separation of Trace Silver in the Leaching Solutions of Antibacterial Products and Determination by Flame Atomic Absorption Spectrometry. Iranian Journal of Chemistry and Chemical Engineering, 36, 109-116.
[5]  Xiang, G.Q., Li, L.L., Jiang, X.M., He, L.J. and Fan, L. (2013) Polyelectrolyte Modified Silica Gel Micro-Column Solid Phase Extraction for the Determination of Silver in Environmental Water Samples by Flame Atomic Absorption Spectrometry. Journal of the Chilean Chemical Society, 58, 2182-2185.
https://doi.org/10.4067/S0717-97072013000400060
[6]  V?is?nen, A., Suontamo, R., Silvonen, J. and Rintala, J. (2002) Ul-trasound-Assisted Extraction in the Determination of Arsenic, Cadmium, Copper, Lead, and Silver in Contaminated Soil Samples by Inductively Coupled Plasma Atomic Emission Spectrometry. Analytical & Bioanalytical Chemistry, 373, 93-97.
https://doi.org/10.1007/s00216-002-1290-2
[7]  Shellaiah, M., Ramakrishnam Raju, M.V., Singh, A., et al. (2014) Synthesis of Novel Platinum Complex Core as a Selective Ag+ Sensor and Its H-Bonded Tetrads Self-Assembled with Triarylamine Dendrimers for Electron/Energy Transfers. Journal of Materials Chemistry A, 2, 17463-17476.
https://doi.org/10.1039/C4TA04231J
[8]  Zhang, Y., Wang, D., Sun, C., et al. (2017) A Simple 2, 6-Diphenylpyridine-Based Fluorescence “Turn-on” Chemosensor for Ag+ with a High Luminescence Quantum Yield. Dyes and Pigments, 141, 202-208.
https://doi.org/10.1016/j.dyepig.2017.02.028
[9]  Zhang, S., Yang, H., Ma, Y. and Fang, Y. (2016) A Fluorescent Bis-NBD Derivative of Calix[4]Arene: Switchable Response to Ag+ and HCHO in Solution Phase. Sensors and Actuators B: Chemical, 227, 271-276.
https://doi.org/10.1016/j.snb.2015.12.016
[10]  Goh, H., Nam, T.K., Singh, A., Singh, N. and Ok Jang, D. (2017) Dipodal Col-orimetric Sensor for Ag+ and Its Resultant Complex for Iodide Sensing Using a Cation Displacement Approach in Water. Tetrahedron Letters, 58, 1040-1045.
https://doi.org/10.1016/j.tetlet.2017.01.098
[11]  Zhang, M. and Pan, G. (2017) Porous GaN Electrode for Anodic Stripping Voltammetry of Silver(I). Talanta, 165, 540-544.
https://doi.org/10.1016/j.talanta.2017.01.016
[12]  El-Mai, H., Espada-Bellido, E., Stitou, M., García-Vargas, M. and Galindo-Ria?o, M.D. (2016) Determination of Ultra-Trace Amounts of Silver in Water by Differential Pulse Anodic Stripping Voltammetry Using a New Modified Carbon Paste Electrode. Talanta, 151, 14-22.
https://doi.org/10.1016/j.talanta.2016.01.008
[13]  Zejli, H., de Cisneros, J.H., Naranjo-Rodriguez, I. and Temsamani, K.R. (2007) Stripping Voltammetry of Silver Ions at Polythiophene-Modified Platinum Electrodes. Talanta, 71, 1594-1598.
https://doi.org/10.1016/j.talanta.2006.07.052
[14]  邓皓, 李霞, 张新申. 化学发光法测定金属离子及其应用[J]. 西部皮革, 2013, 35(2): 42-46.
[15]  肖勤, 林金明. 化学发光免疫分析新进展[J]. 分析试验室, 2011, 30(1): 111-122.
[16]  唐雪谦. 金属有机骨架及其复合材料催化鲁米诺化学发光在生物小分子检测中的应用[D]: [硕士学位论文]. 重庆: 西南大学, 2017.
[17]  龚正君, 黄玉明, 章竹君. 鲁米诺–高锰酸钾–苯酚化学发光体系研究[J]. 分析化学, 2004, 32(6): 772-774.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133