全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

上海深古河道区地铁车站基坑变形及相关问题
Deformations and Problems in a Subway Station Excavation in Deep Paleochannel Region in Shanghai

DOI: 10.12677/HJCE.2019.86123, PP. 1052-1060

Keywords: 深古河道,地铁基坑,变形,立柱隆起,稳定性
Deep Paleochannel
, Subway Excavation, Deformation, Pillar Uplift, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

深厚软土区的深基坑工程仍然具有较大的挑战性。本文介绍了上海地区软粘土厚度较大(40 m以上)的深古河道区某地铁车站基坑(开挖深度17.6 m)的地表沉降、连续墙侧向位移、立柱隆起和支撑内力的特征。该车站标准段基坑地表最大沉降δv与开挖深度H的比值δv/H在0.3%~0.6%;地下连续墙最大侧向位移δhm与开挖深度H的比值在0.17%至0.46%之间,开挖至12 m以后侧向位移明显加大,部分位置超过报警值(δhm/H = 0.4%),并出现踢脚迹象;立柱隆起明显,开挖至坑底时的最大隆起量在60~80 mm,远超出隆起量为20 mm的设计条件。较大的立柱隆起使第一道钢筋混凝土支撑处产生拉力并产生裂缝,影响了支撑轴力的分布以及支撑的稳定性。坑底隆起的具体机理以及立柱桩隆起的分析方法和控制措施是该类地质条件下深基坑工程需重点解决的问题。
There are still big challenges in the deep excavation in soft clay area. The ground settlement, lateral displacement, pillar uplift and supporting internal force of a subway station in deep paleochannel region with a relatively large thickness of soft clay (over 40 m) in Shanghai are introduced. For the standard segment, the ratio of the surface maximum ground surface settlement to the excavation depth (δv/H) is 0.3% - 0.6%. The ratio of the maximum lateral displacement of the underground diaphragm wall to the excavation depth (δhm/H) is 0.17% to 0.46%. When the excavation depth exceeds 12 m, the lateral displacement increased significantly, exceeding the warning value (δhm/H = 0.4%), and showing signs of kicking in some parts. The uplift of the pillars is significant and they are in the range of 60 mm to 80 mm, which is much larger estimated value of 20 mm. The uplift causes the first reinforced concrete strut to generate tension and cracks, which affects the distribution of forces of the struts and the stability of the supporting system. The mechanism of the bottom uplift and the analysis method and control methods of the pillar uplift are the key issues needed to be solved in the subway station excavation under this kind of geological conditions.

References

[1]  Singapore Government Ministry of Manpower (2005) Report of the Committee of Inquiry into the Incident at the MRT Circle Line Worksite That Led to the Collapse of the Nicoll Highway on 20 April 2004.
[2]  Chen, R.P., Li, Z.C., Chen, Y.M., Ou, C.Y., Hu, Q. and Rao, M. (2015) Failure Investigation at a Collapsed Deep Excavation in Very Sensitive Organic Soft Clay. Journal of Performance of Constructed Facilities, 29, Article ID: 04014078.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000557
[3]  周建, 蔡露, 罗凌晖, 应宏伟. 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40(12): 1-10.
[4]  应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 127-133.
[5]  王志虹, 张朋来. 坑底抗隆起圆弧滑动模式规范条文适用性研究[J]. 山西建筑, 2017, 43(8): 58-60.
[6]  张飞, 李镜培, 孙长安, 沈广军, 李飞. 软土狭长深基坑抗隆起破坏模式试验研究[J]. 岩土力学, 2016, 37(10): 2825-2832.
[7]  俞建霖, 龙岩, 夏霄, 龚晓南. 狭长型基坑工程坑底抗隆起稳定性分析[J]. 浙江大学学报(工学版), 2017, 51(11): 78-87.
[8]  楼晓明, 杨晶, 李德宁, 等. 立柱桩在深基坑分步开挖过程中的上拔位移分析[J]. 岩土工程学报, 2013, 35(1): 193-198.
[9]  操小兵, 金文, 李镜培, 姚建平. 基坑开挖卸荷引起立柱桩的隆起位移计算[J]. 结构工程师, 2018, 34(1): 131-137.
[10]  曾晋. 考虑支护位移和水压力的基坑底部隆起量估算改进方法[J]. 水利科技与经, 2018, 24(9): 15-18.
[11]  杜磊, 王育平. 软土地层深基坑隆起变形规律及其对周围建筑物的影响[J]. 施工技术, 2016, 45(15): 99-103.
[12]  周学明, 袁良英, 蔡坚强, 等. 上海地区软土分布特征及软土地基变形实例浅析[J]. 上海国土资源, 2005, 26(4): 6-9.
[13]  孙永福. 上海及长江口第四纪沉积层中埋盖的古河道[J]. 上海国土资源, 1988(4): 9-16.
[14]  高大铭, 陈振荣, 吕全荣. 上海陆域地区古河道溺谷相沉积层工程地质特征研究[J]. 上海国土资源, 1998, 19(4): 11-21.
[15]  王建华, 徐中华, 陈锦剑, 等. 上海软土地区深基坑连续墙的变形特性浅析[J]. 地下空间与工程学报, 2005, 1(4): 485-489.
[16]  王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666.
[17]  Peck, R.B. (1969) Deep Excavation and Tunneling in Soft Ground. Proceedings of the 7th Interna-tional Conference on Soil Mechanics and Foundation Engineering, Mexico City, 225-290.
[18]  Terzaghi, K. and Peck, R.B. (1948) Soil Mechanics in Engineering Practice. John Wiley & Sons, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133