全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于语义链接网的图像自动标注
Image Auto-Annotation Using Semantic Link Network

DOI: 10.12677/AIRR.2019.83018, PP. 158-165

Keywords: 语义链接网,语义估算,Kolmogorov复杂性,图像自动标注
Semantic Link Network
, Semantic Estimation, Kolmogorov Complexity, Automatic Image Annotation

Full-Text   Cite this paper   Add to My Lib

Abstract:

自动图像标注是机器视觉领域中的一项具有挑战性的课题。大多数传统方法聚集在视觉图像与标注概念间的建模,而忽略了语义概念之间的关系。本文提出了一种新的标注方法IA-SLN,它能有效捕获语义概念关系从而提升图像标注性能。首先,构建了一个基于全局关联语义与局部关联语义学习的语义链接网。其次,利用它标注未标注图像。当一个标注概念与其关联概念们频繁共现于图像中,IA-SLN方法将提升该标注概念的语义预测值。最后,通过一个标注增强新策略获得未标注图像的最相关语义标注。在IAPR公共数据集上对比了其他方法,实验结果表明我们的图像标注方法IA-SLN性能更优。
Image Auto-annotation remains as a challenge in machine vision. Most conventional approaches concentrate on the relations between visual images and labeled concepts, and neglect the correla-tions between semantic concepts. In this paper, we present a novel approach called Image Au-to-annotation using Semantic Link Network (IA-SLN), which can effectively capture semantic cor-relations to boost image auto-annotation. Specifically, we first construct a semantic link network based on the global concept correlations and the local concept correlations. Second, we utilize it to annotate unlabeled images. When a concept and its associated concepts frequently occur in images, the prediction of this concept will be boosted in our IA-SLN. Finally, we obtain the most relevant annotations for each of unlabeled images by using a new strategy of annotation promotion. The experimental results on the publicly available dataset IAPR have shown that our approach performs favourably compared with several other state-of-the-art methods.

References

[1]  李长磊, 吕学强, 张凯, 董志安. 一种改进模糊C均值聚类的图像标注方法[J]. 小型微型计算机系统, 2018, 39(8): 1860-1864.
[2]  杨惠荣, 尹宝才, 付鹏斌, 曲亮. 基于Google距离的语义Web服务发现[J]. 北京工业大学学报, 2012, 38(11): 1670-1675.
[3]  王有华, 陈笑蓉. 基于Kolmogorov复杂性的文本聚类算法改进[J]. 计算机科学, 2016, 43(5): 243-246.
[4]  周非, 李阳, 范馨月. 图像分类卷积神经网络的反馈损失计算方法改进[J]. 小型微型计算机系统, 2019, 40(7): 1532-1537.
[5]  Huang, G., Liu, Z., Laurens, V.D.M. and Weinberger, K.Q. (2017) Densely Connected Convolutional Networks. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 2261-2269.
https://doi.org/10.1109/CVPR.2017.243
[6]  常永虎, 李虎阳. 基于梯度的优化算法研究[J]. 现代计算机, 2019(17): 3-8+15.
[7]  Makadia, A., Pavlovic, V. and Kumar, S. (2010) Baselines for Image Annotation. International Journal of Computer Vision, 90, 88-105.
https://doi.org/10.1007/s11263-010-0338-6
[8]  Moran, S. and Lavrenko, V. (2014) Sparse Kernel Learning for Image Annotation. International Conference on Multimedia Retrieval, Glasgow, 1-4 April 2014, 113-120.
https://doi.org/10.1145/2578726.2578734
[9]  Chen, M., Zheng, A. and Weinberger, K.Q. (2013) Fast Image Tagging. Inter-national Conference on International Conference on Machine Learning, Atlanta, 16-21 June 2013, 1274-1282.
[10]  Verma, Y. and Jawahar, C. (2013) Exploring SVM for Image Annotation in Presence of Confusing Labels. British Machine Vision Conference, Bristol, 9-13 September 2013, 1-25.
https://doi.org/10.5244/C.27.25
[11]  Cui, C., Ma, J. and Lian, T. (2013) Ranking-Oriented Nearest-Neighbor Based Method for Automatic Image Annotation. ACM SIGIR Conference on Research and Development in Infor-mation Retrieval, Dublin, 28 July-1 August 2013, 957-960.
https://doi.org/10.1145/2484028.2484113
[12]  高耀东, 侯凌燕, 杨大利. 基于多标签学习的卷积神经网络的图像标注方法[J]. 计算机应用, 2017, 37(1): 228-232.
[13]  汪鹏, 张奥帆, 王利琴, 董永峰. 基于迁移学习与多标签平滑策略的图像自动标注[J]. 计算机应用, 2018, 38(11): 3199-3203+3210.
[14]  张蕾, 蔡明. 融合卷积神经网络与主题模型的图像标注[J]. 激光与光电子学进展, 2019, 56(20): 1-12.
[15]  税留成, 刘卫忠, 冯卓明. 基于生成式对抗网络的图像自动标注[J]. 计算机应用, 2019, 39(7): 2129-2133.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133