|
蓝藻生长对沉积物中Cd形态变化影响
|
Abstract:
随着全球气候不断上升,湖泊富营养化状态不断加剧,污染物质在沉积物,间隙水以及水生生物三相之间进行着不间断的交换,重金属污染物在这三相之间的地球化学行为对水环境和生态安全都有着极为重要的影响。本文研究了蓝藻水华爆发时太湖沉积物中重金属Cd的形态变化。研究发现铜绿微囊藻的生长改变了不同深度沉积物中的氧化还原电位,提高了Cd从沉积物内部向水体系中扩散的速率,加大了沉积物中可还原态以及酸溶态Cd的释放。
With the rising global climate and the increasing eutrophication of lakes, pollutants are continu-ously exchanged among sediments, interstitial water and aquatic organisms. The geochemical be-havior of heavy metal pollutants between these three phases has a very important impact on water environment and ecological security. The morphological changes of heavy metal Cd in Taihu Lake sediments during cyanobacterial blooms were studied. It was found that the growth of Microcystis aeruginosa changed the redox potential environment in sediments of different depths, increased the diffusion rate of Cd from sediment to water system, and increased the release of reducible and acid-soluble Cd in sediments.
[1] | 姜会敏, 郑显鹏, 李文. 中国主要湖泊重金属来源及生态风险评估[J]. 中国人口?资源与环境, 2018, 28(S1): 108-112. |
[2] | 陈思嘉, 郑文杰, 杨芳. 蓝藻对重金属的生物吸附研究进展[J]. 海洋环境科学, 2006, 25(4): 103-106. |
[3] | Chen, J.-Z., Tao, X.-C., Xu, J., et al. (2005) Biosorption of Lead, Cadmium and Mercury by Immobilized Microcystis aeruginosa in a Column. Process Bio-chemistry, 40, 3675-3679. https://doi.org/10.1016/j.procbio.2005.03.066 |
[4] | 林荣根, 黄朋林, 周俊良. 两种褐藻对铜和镉的吸着及洗脱研究[J]. 海洋环境科学, 1999, 18(4): 8-13. |
[5] | 陶梅平. 活性藻类吸附重金属的实验研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2008. |
[6] | 陈镜伊, 唐婉莹, 尹洪斌, 等. 蓝藻的生消过程对镉污染沉积物的生物有效性[J]. 江苏农业科学, 2018, 46(20): 328-332. |
[7] | 江江, 李玉成, 王宁, 等. 巢湖蓝藻聚集对重金属迁移释放的影响[J]. 湖泊科学, 2017, 29(3): 558-566. |
[8] | 吴金浩, 刘桂英, 王年斌, 等. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 2012(2): 333-339. |
[9] | 刘德福. 氧化还原电位、pH值与水体自净能力的关系[J]. 上海环境科学, 1985(2): 22-23. |
[10] | 王江涛, 齐红菊, 李宁, 等. 青岛及周边海区沉积物的氧化还原环境[J]. 中国海洋大学学报(自然科学版), 2009(S1): 184-188. |
[11] | Miao, S., Delaune, R. and Jugsujinda, A. (2006) Influence of Sediment Redox Conditions on Release/Solubility of Metals and Nutrients in a Louisiana Mississippi River Deltaic Plain Freshwater Lake. Science of the Total Environment, 371, 334-343. https://doi.org/10.1016/j.scitotenv.2006.07.027 |